Today

e Distributional Problems.

e Hardness of the Permanent on Random
instances.

e Average-case hardness within NP.
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Today

e If the permanent, on the “uniform”
distribution, is in Avg-P, then P#" C BPP.

e A complete problem (under what
reductions?) for DNP.

Madhu Sudan,

Distributional Problems

e Problems come in two parts (II, D).

— IT is a problem to be solved.
— D is a distribution on instances.

e Avg=P: Goal is to solve all but ¢ fraction
of the problems in time polynomial in input

length and %.

e DNP: Problem II described by relation R

and goal is to find, given x, a y such that
R(z,y).
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The permanent

e Let S, = { bijections 7 : [n]| — [n]}.

e For matrix M,

perm(M) = Z H Mz iy

TESy =1

e Valiant’'s Theorem: Permanent is complete
for #-P.
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Uniform Distribution

e Given 7, pick p at random from {1,...,n%}.

e Pick entries of n x n matrix M
independently, uniformly at random from
L.

Madhu Sudan, : 5

Step 1: Reduce to random p

e Pick pi,...,pr at random from [n?] till
lem(py, ... ,pk) > nl.

e Note computing perm(A)mod p; for all ¢
gives perm(A) modulo their LCM which is
the permanent of A.

e So suffices to compute perm(A)mod p;.
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Lipton’s Theorem

e |f Permanent on Uniform distribution is in
Avg-P, then P*F is in BPP.

e Outline: Will show how to compute the
permanent of any 0/1 matrix in BPP,
if P computes permanent on uniform
distribution w.p. more than say 1 —n—'?
in poly time.

e Given 0/1 matrix A whose permanent
we wish to compute. Will

generate (py, M), (p2, Ms), ..., (P, M)
such that (p;, M;) is distributed uniformly
(but not independently!) and solving the
problem on all m instances will give the
answer for A.
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Computing modular permanent

e Wish to compute perm(A)mod p.
e Pick R € Z;*™ at random.

o Let M, = A+ zR(mod p). Note M, is
random for x # 0.

e Compute permanent mod pof My,... M, 4.

Since B computes each value w.p. 1 -4, it
computes the whole sequence w.p. at least

1—(n+1)d.

e Claim: Have enough info to compute
permanent of A!
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Computing modular permanent (contd.)

e Claim: Have enough info to compute
permanent of A!

e Proof: Consider perm(M,), where z is a
variable.

e This quantity is a polynomial in = of degree
n.

e perm(A) is the constant term of this
polynomial.

e Can interpolate for the polynomial from its
value at n + 1 places.

e Conclude: If B computes (p;, M;) correctly
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Reductions between DNP problems

e Know what it means to reduce II; to II5.
But how to reduce (I1;, D;) to (115, D2)?

e Consider even the simple case: Reduce
(I, Dy) to (II, D3). When is this trivial?

— For a > 1, Dy a-dominates D; if for
every x Prp,[z] > Prp,[z]/a.

— A is é-good for (R,D3) implies A is
(v - 8)-good for (R, D).

— D; dominates D5 and (II, Ds) in Avg-P,
implies (II, D) in Avg-P.

e (IT;, Dy) reduces to (115, D>) if there exists
a polynomial time function f such that
solving II5 on f(z) solves IT; on z, and Dy
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w.p. 1 — d, then we get answer correctly

w.p. at least 1 — n*d on worst-case.
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dominates the distribution of instances of

IT5 as induced by f on D;.
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Impagliazzo-Levin Lemma

Lemma: There exists a (essentially uniform)
distribution U such that for every R, D there
exists a relation R’ such that (R, D) reduces
to (R, U).

Basic idea:

— Will try to make the relation R’ be R
composed with D.

— Need to specify z in domain of R given
z = D(z).

— Can't ask to invert D — may be hard.

— So specify z essentially by  and an index
w € {0,1}* assuming D~!(z) has about
2% members.

— (z,w) does specify such a z, provided we
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Details

e Instances of R’ are tuples (u,k,hq,hs)
where u € {0,1}", and h; : {0,1}" —
{0,1}* and hy : {0,1}"*% — {0,1}" are
nice pairwise independent has functions.

e R'((u,k,h1,h2),(2,v)) ifu= hao(D(2),h1(2))

and R(D(z),y).
e Distribution on instances D; = U is the

following: u €y {0,1}", k €y {0,... ,n},
h1, ho are uniform from their families.
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pick z according to D(z). But don't get
uniformity!
— So hash (z,w) down to n-bit string w.
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Reduction

Need to reduce (R, D) to (R',U).

Reduction: Given z, guess k, and string
w (supposedly k = log|D7!(x)| and w =
hi(z) where 2 €y D~ Y(z)). Pick hi, heo
uniformly, and then let u = ho(z,w). Output
(u,k,hl,hg).

Claim: Instances being generated essentially
according to U.

Main step in proof: If we guess k correctly,
then very likely there is a unique z such that
D(z) =z and hy(z) = w.
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Soundness of reduction

e Related distribution Dy on R’: Pick z €
{0,1}" and let k = log, |D~1(D(2))|. Let
h1, ho be uniform on their domain and let
u = ha(D(z), h1(2)).

e Claim 1: (R/,Dy) is at least as hard as
(R, D).

e Claim 2: D; n-dominates Ds.

e Details left to the reader.
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Interlude

e Now have a theory of average-case hardness
for problems in NP.

e How does it relate to worst-case hardness?
e Wide open.

e Known techniques relating the two don't
seem to work [Feigenbaum-Fortnow].
(Does not rule out all reductions - only
known forms.)

e Can we say anything within NP?

Ajtai’'96 : Shows that worst-case instances of an

“empirically” hard problem can be reduced
to random instances of a related problem.
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A DNP-complete problem

e Easy to massage above into a relation

R" and distribution U’ which is actually
uniform on its domain.

e But still don’t have a single hard problem

(i.e., relation and distribution).

e Use the universal relation [Levin].

e Hard problem: Ry has as instances pairs

(R,z). Ry((R,z),y) holds if R(z,y).

e Claim Ry on uniform distribution on inputs

is at least as hard as (R”,U) - since with
Ll /! 0

probability 1/2/%"1 (a constant) we will

generate R” as the relation to be solved.
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e Major breakthrough!
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Lattice problems Specifying a lattice

e Defn: Lattice L in R™ is a discrete additive e Primal specification: By basis: by,... ,b,, €
subset of R™. R™ (for m < m), b;'s linearly independent,
— Discrete: Exists d > 0 such that for every aZ':S lattice I = {3 ;—; zibil (21, .., 2m) €

point z € L, the ball of radius d around -
z contains only one point (z) from L. e Dual specification: By vectors: b],... b}, €

— Additive: z,y € L impliesxz+y,x —y € R" (for m > n), and lattice I = {v €

L. .
R"|Vj, (v,b}) € Z}.
e Can go from one rep'n to another
algorithmically.
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Lattice problems — Used in factoring polynomials over
integers [LLL].

— Important case of Diophantine approximations.

— Used widely in cryptanalysis.

— Now becoming a basis for cryptography
[Ajtai-Dwork].

e Given lattice L, compute shortest non-zero
vector in in lattice. Was open for long time,
till [Ajtai] showed it to be NP-complete for
randomized reductions.

e Given lattice L and target vector t € R”
compute nearest lattice point to ¢. (Long
know to be NP-hard.)

e Given lattice, find short basis.

e Best algorithmic result: Can find 2°(%)
approximation for all above problems in
poly time, for n-dimensional lattice.

e Shortest vector problem/Closest vector
problem are of fundamental interest:
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Ajtai’s theorem

Roughly, gives approximation problems R, R’
and distribution D such that an avg-P
solution to (R, D) implies a RP algorithm
for R/

e R’: Instance is a pair — a lattice L and a
bound M with the promise that there exists
a basis for L with vectors of length at most
M. Witness is a basis b1, ... ,b,, where all
vectors have length at most poly(n) - M.

e R: Instance is a pair — lattice L given
by dual vectors b7,...,b;, and a bound N
with the promise that L has a vector of
length at most V. Witness is a vector of
length poly(n) - N.
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Intuition

Rapid Hand-waving.
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e D: Fix ¢ = poly(n) and m = O(nlogq),
and N = poly(n). Pick b7,...,b},
randomly from {0,1/q,... ,q —1/q,1}"™.
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