Today

- Distributional Problems.
- Hardness of the Permanent on Random instances.
- Average-case hardness within NP.

Distributional Problems

- Problems come in two parts (Π, D) .
 - $-\Pi$ is a problem to be solved.
 - D is a distribution on instances.
- Avg=P: Goal is to solve all but δ fraction of the problems in time polynomial in input length and $\frac{1}{\delta}$.
- DNP: Problem Π described by relation R and goal is to find, given x, a y such that R(x,y).

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Today

- If the permanent, on the "uniform" distribution, is in Avg-P, then $P^{\#P} \subseteq BPP$.
- A complete problem (under what reductions?) for DNP.

The permanent

- Let $S_n = \{ \text{ bijections } \pi : [n] \to [n] \}.$
- For matrix M,

$$\operatorname{perm}(M) = \sum_{\pi \in S_n} \prod_{i=1}^n M_{i\pi(i)}.$$

• Valiant's Theorem: Permanent is complete for #-P.

Uniform Distribution

- Given n, pick p at random from $\{1, ..., n^3\}$.
- ullet Pick entries of $n \times n$ matrix M independently, uniformly at random from \mathbb{Z}_p .

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Step 1: Reduce to random p

- Pick p_1, \ldots, p_k at random from $[n^3]$ till $lcm(p_1, \ldots, p_k) > n!$.
- Note computing $\operatorname{perm}(A) \operatorname{mod} p_i$ for all i gives $\operatorname{perm}(A)$ modulo their LCM which is the permanent of A.
- So suffices to compute $perm(A) \mod p_i$.

Lipton's Theorem

- If Permanent on Uniform distribution is in Avg-P, then $P^{\#P}$ is in BPP.
- ullet Outline: Will show how to compute the permanent of any 0/1 matrix in BPP, if P computes permanent on uniform distribution w.p. more than say $1-n^{-10}$ in poly time.
- Given 0/1 matrix A whose permanent we wish to compute. Will generate $(p_1, M_1), (p_2, M_2), \ldots, (p_m, M_m)$ such that (p_i, M_i) is distributed uniformly (but not independently!) and solving the problem on all m instances will give the answer for A.

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Computing modular permanent

- Wish to compute $perm(A) \mod p$.
- Pick $R \in \mathbb{Z}_p^{n \times n}$ at random.
- Let $M_x = A + xR \pmod{p}$. Note M_x is random for $x \neq 0$.
- Compute permanent $\mod p$ of M_1,\ldots,M_{n+1} . Since B computes each value w.p. $1-\delta$, it computes the whole sequence w.p. at least $1-(n+1)\delta$.
- Claim: Have enough info to compute permanent of A!

Computing modular permanent (contd.)

- ullet Claim: Have enough info to compute permanent of A!
- Proof: Consider $perm(M_x)$, where x is a variable.
- This quantity is a polynomial in x of degree n.
- perm(A) is the constant term of this polynomial.
- Can interpolate for the polynomial from its value at n+1 places.
- Conclude: If B computes (p_i, M_i) correctly

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

w.p. $1 - \delta$, then we get answer correctly

w.p. at least $1 - n^4 \delta$ on worst-case.

.

Reductions between DNP problems

- Know what it means to reduce Π_1 to Π_2 . But how to reduce (Π_1, D_1) to (Π_2, D_2) ?
- Consider even the simple case: Reduce (Π, D_1) to (Π, D_2) . When is this trivial?
 - For $\alpha \geq 1$, D_2 α -dominates D_1 if for every $x \ \Pr_{D_2}[x] \geq \Pr_{D_1}[x]/\alpha$.
 - A is δ -good for (R, D_2) implies A is $(\alpha \cdot \delta)$ -good for (R, D_1) .
 - D_1 dominates D_2 and (Π, D_2) in Avg-P, implies (Π, D_1) in Avg-P.
- (Π_1, D_1) reduces to (Π_2, D_2) if there exists a polynomial time function f such that solving Π_2 on f(x) solves Π_1 on x, and D_2

dominates the distribution of instances of Π_2 as induced by f on D_1 .

Impagliazzo-Levin Lemma

Lemma: There exists a (essentially uniform) distribution U such that for every R,D there exists a relation R' such that (R,D) reduces to (R',U).

Basic idea:

- Will try to make the relation R' be R composed with D.
- Need to specify z in domain of R given x = D(z).
- Can't ask to invert D may be hard.
- So specify z essentially by x and an index $w \in \{0,1\}^k$ assuming $D^{-1}(x)$ has about 2^k members.
- (x,w) does specify such a z, provided we

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

pick x according to D(z). But don't get

- So hash (x, w) down to n-bit string u.

uniformity!

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Details

- Instances of R' are tuples (u,k,h_1,h_2) where $u\in\{0,1\}^n$, and $h_1:\{0,1\}^n\to\{0,1\}^k$ and $h_2:\{0,1\}^{n+k}\to\{0,1\}^n$ are nice pairwise independent has functions.
- $R'((u, k, h_1, h_2), (z, y))$ if $u = h_2(D(z), h_1(z))$ and R(D(z), y).
- Distribution on instances $D_1 = U$ is the following: $u \in_U \{0,1\}^n$, $k \in_U \{0,\ldots,n\}$, h_1,h_2 are uniform from their families.

Reduction

Need to reduce (R, D) to (R', U).

Reduction: Given x, guess k, and string w (supposedly $k = \log |D^{-1}(x)|$ and $w = h_1(z)$ where $z \in_U D^{-1}(x)$). Pick h_1, h_2 uniformly, and then let $u = h_2(x, w)$. Output (u, k, h_1, h_2) .

Claim: Instances being generated essentially according to U.

Main step in proof: If we guess k correctly, then very likely there is a unique z such that D(z) = x and $h_1(z) = w$.

Soundness of reduction

- Related distribution D_2 on R': Pick $z \in_U$ $\{0,1\}^n$ and let $k = \log_2 |D^{-1}(D(z))|$. Let h_1,h_2 be uniform on their domain and let $u = h_2(D(z),h_1(z))$.
- Claim 1: (R', D_2) is at least as hard as (R, D).
- Claim 2: D_1 *n*-dominates D_2 .
- Details left to the reader.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Interlude

- Now have a theory of average-case hardness for problems in NP.
- How does it relate to worst-case hardness?
- Wide open.
- Known techniques relating the two don't seem to work [Feigenbaum-Fortnow].
 (Does not rule out all reductions - only known forms.)
- Can we say anything within NP?

Ajtai'96: Shows that worst-case instances of an "empirically" hard problem can be reduced to random instances of a related problem.

A DNP-complete problem

- Easy to massage above into a relation R'' and distribution U' which is actually uniform on its domain.
- But still don't have a single hard problem (i.e., relation and distribution).
- Use the universal relation [Levin].
- Hard problem: R_U has as instances pairs (R, x). $R_u((R, x), y)$ holds if R(x, y).
- Claim R_U on uniform distribution on inputs is at least as hard as (R'', U) since with probability $1/2^{|R''|}$ (a constant) we will generate R'' as the relation to be solved.

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

• Major breakthrough!

Lattice problems

- Defn: Lattice L in \mathbb{R}^n is a discrete additive subset of R^n .
 - Discrete: Exists d > 0 such that for every point $x \in L$, the ball of radius d around x contains only one point (x) from L.
 - Additive: $x, y \in L$ implies $x + y, x y \in L$.

Specifying a lattice

- ullet Primal specification: By basis: $b_1,\ldots,b_m\in\mathbb{R}^n$ (for $m\leq n$), b_i 's linearly independent, and lattice $L=\{\sum_{i=1}^m z_ib_i|(z_1,\ldots,z_m)\in\mathbb{Z}^m\}$.
- Dual specification: By vectors: $b_1^*, \ldots, b_m^* \in \mathbb{R}^n$ (for $m \geq n$), and lattice $L = \{ \mathbf{v} \in \mathbb{R}^n | \forall j, \ \langle \mathbf{v}, \mathbf{b}_j^* \rangle \in \mathbb{Z} \}$.
- Can go from one rep'n to another algorithmically.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

~~

Lattice problems

- Given lattice L, compute shortest non-zero vector in in lattice. Was open for long time, till [Ajtai] showed it to be NP-complete for randomized reductions.
- Given lattice L and target vector $t \in \mathbb{R}^n$ compute nearest lattice point to t. (Long know to be NP-hard.)
- Given lattice, find short basis.
- Best algorithmic result: Can find $2^{o(n)}$ approximation for all above problems in poly time, for n-dimensional lattice.
- Shortest vector problem/Closest vector problem are of fundamental interest:

- Used in factoring polynomials over integers [LLL].
- Important case of Diophantine approximations.
- Used widely in cryptanalysis.
- Now becoming a basis for cryptography [Ajtai-Dwork].

Ajtai's theorem

Roughly, gives approximation problems R,R' and distribution D such that an avg-P solution to (R,D) implies a RP algorithm for R'.

- R': Instance is a pair a lattice L and a bound M with the promise that there exists a basis for L with vectors of length at most M. Witness is a basis b_1, \ldots, b_m where all vectors have length at most $\operatorname{poly}(n) \cdot M$.
- R: Instance is a pair lattice L given by dual vectors b_1^*, \ldots, b_m^* and a bound N with the promise that L has a vector of length at most N. Witness is a vector of length $\operatorname{poly}(n) \cdot N$.

© Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

25

• D: Fix q = poly(n) and $m = O(n \log q)$, and N = poly(n). Pick b_1^*, \ldots, b_m^* randomly from $\{0, 1/q, \ldots, q - 1/q, 1\}^n$.

©Madhu Sudan, Spring 2003: Advanced Complexity Theory: MIT 6.841/18.405J

Intuition

Rapid Hand-waving.