Today What is random?

e Computational Pseudorandomness. e Initially: ~ Sequence of random bits,
independent, uniform are random. Nothing
e Blum-Micali-Yao paradigm: Based on 1- else is.

way functions.

e Shannon: Uniformity not necssary.
Independence not necessary. Can attribute
to any distribution an entropy which
measures amount of randomness in it.
Roughly - uniform distribution on S C
{0, 1}"™ has log, | S| bits of entropy. “Large
sets are be random; small sets aren't”.

e Nisan-Wigderson paradigm: Based on hard
functions.

e Kolmogorov-Chaitin-Solomonoff: “Random
is what can't be described”: If finite
TM produces an infinite sequence, then

Madhu Sudan, : 1 Madhu Sudan, : 2

sequence is not random, else it is. What BMY: Strings vs. Sets of Strings
about finite sequences?

e Blum-Micali-Yao: Random is when can't e Roughly: A fixed finite length string can't
predict the next bit in time polynomial be random in any meaningful sense.
in n. Equivalently, set is pseudorandom
if no polynomial time algorithm behaves e However a long string generated from a
differently on string than on uniform short random seed can appear random to
distribution. some.

e What is random?

— If you can’t distinguish given distribution
from random, then distribution is pseudo-
random to you.

—if You = { Class of all polytime
algorithms (circuits) }, then distribution
is pseudo-random.

Madhu Sudan, : 3 Madhu Sudan, : 4

BMY: Indistinguishability as random

Distributions Dy and D, are e-
indistinguishable to Boolean A if

| Pr [A@@) =1~ Pr [A@) =1 <e

x(—Dl

Distributions Dy and D, are statistically
indistinguishable if they are 1/p(n)
indistinguishable to every A and every
polynomial p.

Distributions DD and D5 are computationally
indistinguishable if they are 1/p(n)

indistinguishable to every polytime

computable function (poly size circuit) A

and every polynomial p.

Madhu Sudan, : 5

BMY: Pseudorandom generators

o G :{0,1}° — {0,1}" is a pseudorandom-
generator if {G(s)}s is computationally
pseudo-random and G is polytime
computable in input.

e Note (G is easy, but G~' hard. Thus prg
needs NP # P. Even more! DNP #
Avg — P.

e Focus on polynomial length stretching, not
more.

Madhu Sudan, : 7

e BMY Notion: D; is pseudo-random if it
is computationally indistinguishable from
uniform distribution.

Madhu Sudan, : 6

BMY: Alternately, Unpredictable is
random

e ith bit of GG is d-unpredictable to A if
Pry[G(s)[i+1] = A(G(s)[L,... ,i])] < 5+
0.

e (5 pseudorandom if for all 7 and for all prob.
poly time A, and all 6 = 1/p(n), ith bit of
G is d-unpredictable to A.

e Thm: Two defns are equivalent.

e Proof. One direction obvious. Other
direction is hybridization + case analysis.

Madhu Sudan, : 8

Consequence: 1-bit stretcher suffices

Let G map s bits to s + 1.

Will construct prg mapping s bits to n from
this.

Let Sy = S be initial seed. Let z; =
G(S;—1) and let S; = first s bits of z; and
let y; = last bit of x;. Then the map from
S to yy---vy, is pseudorandom.

Proof: Consider a predictor predicting v;
given y;11---y, (Aha! Reversing the
output). Then the predictor can also
predict y; given S; (since y;y1-- -y, can be
computed from S;). But this is predicting
the last bit in the ith application of G!

Madhu Sudan, : 9

Nisan-Wigderson paradigm

G :{0,1}* — {0,1}" is a pseudorandom-
generator if {G(s)}s is computationally
pseudo-random to circuits of size n and
(G is polytime computable in output.

Now don't need to show NP # P! Still need
to show some function in, say, time(n?)
does not have size n circuits.

e Main theorem: Suffices to have such

functions.

— Step 1: If function in E is hard on average
for subexp. circuits then BPP=P.

— Step 2: If function in E is hard on worst-
case for subexp. circuits then there exists
function in E is hard on average.

Madhu Sudan, : 11

Constructions & Applications

First notice we didn't really need GG to be
pseudo-random, only that its last bit be
unpredictable given the first s.

Blum-Micali: Prove that the map
G : (p,g,z1» (p,g,9"(mod p), msb(z))

satisfies this property if we believe discrete
log. to be hard. Use this to construct prg.

Applications: Mostly in cryptography.
Often easy to show that “"knowledge” is
not leaked by some string, by showing it is
computationally pseudorandom.

Our quest: Complexity-theoretic use. Use
pseudo-randomness to show BPP=P. First
steps by Yao. Later Nisan-Wigderson.

Madhu Sudan, : 10

