
Today

• Recap of PRGs and deterministic

simulation of BPP.

• Nisan-Wigderson PRG.
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BMY style PRGs

• Motivation from Cryptography.

• G : {0, 1}s → {0, 1}n is pseudorandom

if for all poly sized circuits C and all

polynomials p,

| Pr
x←Us

[C(G(x)) = 1]− Pr
y←Un

[C(y) = 1]| ≤
1

p(n)
.

• G is constructible in poly(s).

• [BMY]: OWF exist =⇒ imply G :

{0, 1}n
ε
→ {0, 1}n exist for all ε > 0.
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Det. Simulation of BPP

• BPP Simulation: Run BPP algorithm on

pseudorandom string G(x) for all possible

seeds x and take majority vote.

• [BMY] OWF exist =⇒

BPP ⊆
⋂

ε>0

DTIME(2n
ε

)

.

• Observation: Existence of PRGs not only

imply the efficient det. simulation of BPP

above but also imply NP 6= P (Oops!

more than what we intended to prove.)

Is derandomizing BPP really as hard as

proving NP 6= P?
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Do we need such strong PRGs for BPP

simulation?

• Running time of PRG can be relaxed to

2O(s) since we anyway pay this overhead

while cycling over all seeds.

• Enough to fool circuits of fixed size (say

n) instead of all poly sized circuits. In

fact, generator can take more time than

the circuit it wants to fool. This gets us

out of the NP 6= P rut.
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Alternate defn. of PRGs

[Nisan-Wigderson style]

• G : {0, 1}s → {0, 1}n is (S, ε)-PRG if for

all circuits C of size at most S,

| Pr
x←Us

[C(G(x)) = 1]− Pr
y←Un

[C(y) = 1]| ≤ ε.

• G is constructible in DTIME(2O(s)).

• With this definition, existence of (n2, 1
10)-

PRG implies

BPP ⊆
⋃

c>0

DTIME(2O(s(nc)))

.
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• So, (m2, 1/10)-PRG of form G :

{0, 1}O(logn) → {0, 1}n would imply

BPP=P.
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Average Case Hardness

• f : {0, 1}n → {0, 1} is (S, ε)-hard if for

every circuit C of size at most S,

Pr
x
[C(x) = f(x)] ≤ ε

.

• Note: If f is (S, ε)-hard, then the PRG

G : x 7→ x ◦ f(x) is a (S, ε)-PRG.

• Nice Idea! However, stretches by only 1 bit.

Try applying f to several disjoint subsets

of the input seed. More pseudorandom

bits, but ratio of pseudorandom bits to

amount of random bits invested still bad.

Try non disjoint subsets instead with limited

overlap. Concept of design
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Designs

• A collection of subsets S = (S1, . . . , Sn) of

a universe U = [s] = {1, 2, . . . , s} is called

a (l, a)-design over [s] if

− |Si| = l, ∀i.

− |Si ∩ Sj| ≤ a, ∀i 6= j.

• For any constant γ > 0 and any l,m, a,

there exists a (l, a)-design over [s] with

s = O(l2/a), a = γ log n. Moreover, this

design is constructible in time poly(s, n).

[A simple greedy approach works!]
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Nisan Wigderson PRG

• Let S = (S1, . . . , Sn) be a (l, a)-design

over [s] and f : {0, 1}l → {0, 1} a function

(supposedly hard).

• For any string z, let z|S denote the

substring indexed by the bit positions of

S. (e.g., z = 01000111, S = {1, 3, 5, 7}

then z|S = 0001.)

• NW PRG: NWf,S : {0, 1}l → {0, 1}n

defined as follows:

z 7→ f(z|S1) ◦ f(z|S2) ◦ · · · ◦ f(z|Sn)

.
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Main Theorem

• If there exists a function f : {0, 1} → {0, 1}

computable in DTIME(2O(l)) and such

that for all sufficiently large l, f restricted

to l bits is (2εl, 1/10n)-hard, then NWf,S

is a (n2, 1/10)-PRG.
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Proof Sketch

• If NWf,S not PRG, then there exist a

predictor P that predicts the ith bit based

on the (i-1) earlier bits better than random

guessing.

Pr
z
[P (f(z|S1) . . . f(z|S1−1)) = f(z|Si

)] ≥
1

2
+
1

10n
.

• By averaging can fix all the bits of z except

those in Si and above statement still holds.

• Variables in each of f(z|Sj
), j 6= i are at

most a = γ log n in number. Thus, each

of these can be computed using a lookup

table Tj of size at most 2
a = n(say). Thus,

the circuit P (T1(x), T2(x), . . . , Ti−1(x))
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computes f(x) better than random

guessing contradicting f is hard on average.
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Average Case vs. Worst Case

• We have show average case hardness

translates into pseudorandomness. What

about worst-case hardness? For

Permanent, we know these are equivalent

notions. Hence, if there does not exist a

circuit of size at most 2εn computing the

Permanent, then BPP=P.

• Anything weaker? Impagliazzo, Wigderson,

Trevisan, Sudan and Vadhan show how

to convert a worst case hard function f

in EXP into another function f ′ also in

EXP but which is average case hard. This

reduction involves error-correcting codes.

Thus, worst case hardness suffices for

pseudorandomness.
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How close are we to prove BPP=P?

• We have proven circuit lower bounds (in

some form) imply derandomization. But

are they necessary?

• A similar result to derandomizing BPP

shows AM=NP if NEXP has some form

of circuit lower bound. [IKW] prove a weak

converse. They show

AM 6= NEXP ⇐⇒ NEXP 6⊆ NP/poly

. i.e., even a weak derandomization of AM

is possible if and only if we prove circuit

lower bounds for NEXP.

• Thus, derandomization could be as hard as

proving circuit lower bounds!!
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Alt. proof of BPP ∈ Σ2

• NW paradigm indicates that BPP is no

harder than finding a hard function. This

gives the following Σ2 algorithm for BPP.

− GUESS a “hard function” f : {0, 1}l →

{0, 1}.

− FORALL circuits C of size at most 2εl,

check that C does not approximate f on

more than 1
2 + ε fraction of inputs.

− Use f to construct NWf,S and use this

PRG to derandomize the BPP algorithm.
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