
6.841 Advanced Complexity Theory February 7, 2005

Lecture 2
Lecturer: Madhu Sudan Scribe: Kyomin Jung

1 Overview

In this lecture we will discuss some approaches and results concerning the problem P 6= NP, that
use diagonalization arguments1. Baker-Gill-Solovay relativization shows a limitation of diagonalization
method for showing P 6= NP. And Lander’s theorem says about the hierarchy of intermediate language
classes between P and NP under the assumption that P 6= NP. Then we will introduce the circuit
complexity of a language, which we will discuss more in detail in the next lecture.

2 Diagonalization

Diagonalization argument, which was first used by Cantor when he showed that there is no one to one
correspondence between N and R, is an important tool when we show that for classes of languages C1

and C2 that are enumerable, C1 is strictly contained within C2. Let

C1 =< L1, L2, L3, . . . >

where each languages in C1 appears at least once in the above sequence. Let x1, x2, x3 . . . be a sequence
of all the finite binary strings. We can get this sequence because the set of all the finite binary strings
is enumerable. Then each language Li can be thought as an infinite string si1si2si3 . . . where sij = 1
iff xj ∈ Li and otherwise sij = 0. Now think of an infinite string L′ = ¯s11 ¯s22 ¯s33 . . ., where s̄ii is the
negation of sii. Then L′ is not in C1 because L′ differs from Li in their ith bits. So if we show that L′ is
in C2(this part differs according to the specific problem), we obtain that C1 is strictly contained within
C2. This type of argument is called diagonilization and usually this kind of argument can be applied to
obtain some results like Time(n2) is strictly contained within Time(n3).

3 Baker-Gill-Solovay Relativization

For a complexity class of languages, C, which is characterized by some limit on some resources(for
example, P), we can think of a “relativized” class of languages with respect to a given language A, that
is, machines in this class are allowed to make oracle calls to A for a unit cost.

Definition 1 PA, the relativization of P with respect to A, is the set of all languages decidable by
polynomial time machines with oracle calls to A.

Definition 2 NPA, the relativization of NP with respect to A, is the set of all languages decidable by
polynomial time machines with oracle calls to A.

If diagonalization produces a language L′ in C2 but not in C1, then it can be seen that for every
language A, CA

1 is strictly contained in CA
2 using L′. With this fact in mind, next theorem due to

Baker-Gill-Solovay shows a limitation of diagonalization arguments for proving P 6= NP.

Theorem 3 (Baker-Gill-Solovay) There exist oracles A and B such that

PA = NPA

PB 6= NPB .

1See Lance Fortnow’s survey paper on diagonalization as a reference

2-1

Here we will only prove the first part of the above theorem. To this end, take the language A to be a
PSPACE-complete language, for example TQBF. Then

NPA ⊆ NPSPACE = PSPACE ⊆ PA ⊆ NPA.

So, from this results we can see that diagonilization argument cannot help to prove P 6= NP.

4 Ladner’s Theorem

Some examples of NP problems that are not known to be in P or NP-complete are Graph isomorphism
problem and Integer Factoring problem. Although it was not known whether Primality testing is in P
or not until some years ago, recently it was proved that Primality testing is in P. Althought currently
we do not know whether P 6= NP or not, above problems are usually thought to be as candidates of
languages that would be in between P and NP-complete. Now we will state and prove a result due to
Lander that says that if P 6= NP, there must be some(in fact, infinitely many) intermediate language
classes between P and NP.

Theorem 4 (Lander) If P 6= NP, then there exists L ∈ NP such that L is not NP-hard and L is not
in P.

More general version of Lander’s theorem, which we will not deal in this lecture, says that

Theorem 5 If C1 ≤P C2 holds but C2 ≤P C1 does not holds, then there exists C3 and C4 such that
C1 ≤P C3 ≤P C2 and C1 ≤P C4 ≤P C2 hold but none of C2 ≤P C3, C2 ≤P C4, C3 ≤P C1, C4 ≤P C1,
C3 ≤P C4, C4 ≤P C3 holds.

Theorem 5 shows that if P 6= NP, then there must be infinitely many intermediate language classes
between P and NP up to polynomial time reduction. Now to show the simpler version of the Lander’s
theorem, we will explicitly define a language L that is in NP, but not in P nor a NP-complete.

Let f : N → N be a polynomial time computable function which we will define later. Then we will
define

L = {n | n ∈ SAT and f(|n|) is even}.
Intuitively, when f(n) is even L(n) is copied from SAT(n)(here SAT can be replaced by any NP-complete
language), and when f(n) is odd L(n) is copied from the language 000000 . . . that is in P.

We will define f to be an increasing function so that L is in NP but it is different from any of
languages in P, and different from any of NP-complete languages. Let M1, M2,M3 . . . be a sequence of
al the polynomial time deterministic Turing Machines (allowing that some machines may appear more
than once) so that Mi(x) runs in time |x|i. Similarly let g1, g2, g3 . . . be a sequence of all the polynomial
time computable reductions so that gi(x) runs in time |x|i. Inductively, define f(n) by

1. When f(n− 1) = 2j for some integer j. f(n) = f(n− 1) + 1 if there exist x ≤ log log n such that
Mj(x) 6= L(x). Otherwise f(n) = f(n − 1). I.e., f stays at the same value until L is sure to be
different from Mj at some sufficiently small x.

2. When f(n−1) = 2j+1 for some integer j. f(n) = f(n−1)+1 if there exist x ≤ log log n such that
SAT(x) 6= L(gj(x)). Otherwise f(n) = f(n− 1). I.e., f stays at the same value until it becomes to
be sure that SAT is not polynomial time reducible to L via reduction gi.

Now we will show that f tends to infinity. Suppose that f is stuck at some even number as n goes
to infinity. Then by the definition of L, L=SAT except finitely many inputs, and L = Mj for some j.
A contradiction to the assumption that SAT is not in P. Similarly, if f is stuck at some odd number,
then L is in P, and SAT is reducible to L via some reduction gj , saying that SAT is in P, again a
contradiction to the assumption. So f tends to infinity as n goes to infinity.

2-2

Then by the definition of f , we obtain that L is in NP(note that here we need the fact that SAT is
in NP). And because L is different from any of Mj , L is not in P. And because SAT is not polynomial
time reducible to L, L is not NP-complete.

5 Circuit Complexity

Circuit is a model of computation having a finite number of input bits and finite number of output bits
and having finite number of NOT, AND, OR gates in the middle of it. Formally, circuit can be thought
as a directed, acyclic graph. Then a circuit consists of three types of nodes:

1. input nodes: input nodes have 0 In-degrees and (finitely many) Out-degrees. They are labeled
with x1, x2, x3, . . . xn.

2. computation nodes: There are three types of computation nodes. NOT nodes have 1 In-degrees
and 1 Out-degrees, and AND and OR nodes have 2 In-degrees and 1 Out-degrees.

3. output nodes: output nodes have 1 In-degrees and 0 Out-degrees.

Now we will define the circuit complexity of a language L.

Definition 6 For a family of circuits {Cn} with Cn : {0, 1}n → {0, 1}, we say {Cn} decides language
L if for all n ∈ N, L ∪ {0, 1}n = C−1

n (1).

Definition 7 Define the size of Cn(denoted by |Cn|) to be the number of gates(nodes) in the circuit Cn.

Note that sometimes one may define the size of Cn to be the number of wires(edges), but one measure is
polynomial to the other. With these definitions we can define the circuit complexity of a given language
L as usual.

Definition 8 We say a language L has circuit complexity f(·) if there exists a circuit family {Cn}
deciding L and for all n ∈ N, |Cn| = f(n).

Then why do we do the circuit complexity? That’s because sometimes it provides some tools for com-
paring some complexity classes. We will discuss this more in detail in the next lecture.

2-3

