
6.841 Advanced Complexity Theory February 9, 2005

Lecture 3

Lecturer: Madhu Sudan Scribe: Ilya Baran

1 Overview

In this lecture we looked at three non-uniform computation models, defined measures of their
complexity, and proved some relationships between them. The models were circuits, formulas,
and branching programs and the complexity measures were size, depth and width.

2 Non-Uniform Turing Machines

In the last lecture we defined circuits, the basic non-uniform model of computation as a DAG
of input nodes, logic gates, and output nodes. To relate circuit families to Turing Machines,
we provide a Turing Machine with a different “advice string” for every input length. So a
non-uniform Turing Machine is a two-input TM, M(x, y) together with a sequence of advice
strings ā = a1, a2, Its language is defined as

L(M, ā) = {w | M(w, a|w|) = 1}.

If M ’s resource use corresponds to a complexity class C and the advice string length is bounded
as |an| = O(`(n)) for some function `, then L(M, ā) is said to be in the complexity class C/`.
In particular, languages recognizable by polynomial time TMs with polynomial length advice
strings are in the class P/poly.

It is easy to show that a P/poly non-uniform TM is equivalent to a polynomial size circuit
family: a circuit can be simulated by a non-uniform TM if an is the description of the circuit
for inputs of size n. Conversely, a circuit family can simulate a non-uniform TM if an is hard
coded into the circuit for simulating the TM on inputs of size n.

3 Weaker Non-Uniform Models

We also considered two weaker non-uniform computation models: formulas and branching
programs. Formulas are circuits with outdegree 1 (except that input nodes may have arbitrary
outdegree).

A branching program (BP) computing a function f(x1, . . . , xn) is a DAG with many branch-
ing nodes and two output nodes. Each branching node is labeled with one of the xi’s and has
outdegree 2, with the outgoing edges labeled 0 and 1. One of the branching nodes is marked
as the starting node. The output nodes have no outgoing edges and are labeled 0 and 1. The
BP computes by starting at the starting node and at each node following the edge whose label
corresponds to the value of the variable with which the node is labeled. The computation ends
at one of the output nodes and that node’s label determines the value of f .

For example, the following branching program computes x1 + x2 + x3 (mod 2):

3-1

0 0 0

1 1 1

1

0 0

1

0

1

x1 x2

x2 x3

x3

4 Complexity Measures

Circuits and formulas have two natural measures: size and depth. The size of a circuit or
a formula is the number of nodes and in some sense corresponds to time. The depth of a
circuit or a formula is the length of the longest path in the DAG. This corresponds to parallel
computation time.

For BPs, size and depth are defined analogously, but size represents only an “upper bound”
on time (because for any particular input, most of the BP may be irrelevant), while depth
represents only a “lower bound” on time (because for any boolean function we can make a BP
of depth n).

We may also consider another measure of Branching Program complexity: width. A branch-
ing program is called layered if its nodes can be partitioned into sets (layers) L1, L2, . . . , Lm so
that edges always go from layer Li to Li+1. Then the width of a Branching Program is defined
to be the maximum size of a layer. The logarithm of the width is in some sense a lower bound
on space.

5 Relationships Between Complexity Measures

We can show some easy relationships between the complexities of different models.
Given a boolean function f , let sizeC(f), sizeF (f) and sizeB(f) denote the minimum size

of a circuit, formula, and branching program for f , respectively. Similarly define depthC(f),
depthF (f), and depthB(f).

We can show that for all f

1. sizeC(f) ≤ sizeF (f)

2. sizeC(f) = O(sizeB(f))

3. sizeB(f) ≤ sizeF (f) + 2 (if formulas contain only NOTs, ANDs and ORs)

4. depthC(f) = depthF (f)

5. depthF (f) = Θ(log sizeF (f)) (if formulas have bounded fan-in)

The reasons the above are true are:

1. is obvious because every formula is a circuit.

3-2

2. follows because we can simulate every BP with a circuit of roughly the same size. Lay
out the nodes of the BP in topological order from left to right and construct the circuit
inductively from right to left. Suppose that the functions at the nodes of a branching
program (from right to left) are f1, f2, Given a circuit that has nodes whose outputs
are f1, . . . , fk−1, we can construct a circuit with O(1) more gates that also has a node
that outputs fk. Suppose the kth node in the BP (from right) reads xi and branches to
xi−i1 and xi−i2 on 0 and 1 respectively. Then we add a node to the circuit whose value is
fk = (xi ∧ fi−i2) ∨ (x̄i ∧ fi−i1), which can be done with O(1) gates.

f2

f4

xk

f1f2f3f4

xk
1

circuit for f1, . . . , fk−1

0

fk+1 fk

3. is true because we can construct a BP that simulates a formula and whose size is the
number of leaves in the formula plus the two output nodes. The construction proceeds
by induction: assuming that we constructed BPs for several subformulas, we can combine
them into a BP that computes their AND or OR. To combine BPs b1, b2, . . . , bn into a
BP b that computes their AND, merge bi’s 1 output node with bi+1’s start node. Merge
all of the 0 output nodes together. Make b’s start node b1’s start node and b′s outputs
are the bn’s 1 output and the merged 0 outputs. See the figure below. ORs are obtained
similarly and NOTs are trivial.

x3

1

0

x8x5

the BP for the AND of the 3 BPs above is:

1

0

x3

1

0

x8

1

0

x5

b1 b2 b3

4. has two parts: depthC(f) ≤ depthF (f) holds because every formula is a circuit, and
depthC(f) ≥ depthF (f) holds because the straightforward method for converting a circuit
into a formula (and possibly causing exponential increase in size) does not increase depth.

5. also has two parts: depthF (f) = Ω(log sizeF (f)) is trivial because the fan-in is bounded.
depthF (f) = O(log sizeF (f)) was left as an exercise. The idea is that we can convert any

3-3

formula to one of logarithmic depth by “rebalancing” it. This can be done by picking
an edge that splits the formula tree into roughly equal pieces, recursively rebalancing the
pieces, and using a multiplexer as the new root.

6 Neciporuk’s Lower Bound on Formula Size for an Explicit

Function

A simple counting argument shows that some boolean functions require exponentially large
formulas. It is easy to see that there are 22n

boolean functions of n variables. On the other
hand, there are approximately 42n/c

binary trees of size 2n/c and each tree may be converted
into a formula in at most g2n/c

distinct ways (where g is the number of different gates allowed).

Therefore, there are at most approximately (4g)2n/c
= 22n/c log2(4g) formulas of size 2n/c. For

any c > 1, this is smaller than 22n
for all sufficiently large n.

It is much harder to construct an explicit family of boolean functions that requires large
formulas. We describe a family that requires formulas of almost quadratic size. This is argued
by restricting the function to a subset of its inputs and then doing a counting argument similar
to the one above.

The function fn is defined on 2n log n boolean variables, grouped into n groups. So for i = 1
to n, let xi = (xi1 , xi2 , . . . , xi2 log n

). Define fn to be:

fn(x1, x2, . . . , xn) =

{

1 if for some i 6= j, xi = xj

0 otherwise

We will show that this function family requires formulas of size Ω(n2) by proving that for every
i, there must be Ω(n) leaves reading from xi.

Assume that some xi is read in k leaves. Consider the functions obtained by fixing all
inputs except xi. They are fā(xi) = f(a1, a2, . . . , ai−1, xi, ai+1, . . . , an) where the a’s are all
distinct. Then fā(xi) = 1 precisely when xi = aj for some j, so these functions are in one-to-
one correspondence with subsets of size n− 1 from among the 22 log n = n2 possible ai’s. There

are clearly
(n2

n−1

)

≥ 2n of them.
On the other hand, from our original formula, we can construct a formula for fā by collapsing

and propagating the a’s values until the only leaves left are those that read xi. Using the
counting argument in the first paragraph, we conclude that there are at most 2O(k) formulas on
k leaves. But each of the fā’s needs a different formula, so 2O(k) ≥ 2n and therefore k = Ω(n).

3-4

