6.841 Advanced Complexity Theory February 16, 2005

Lecture 5
Lecturer: Madhu Sudan Scribe: Victor Chen

1 Administration

Reminder to all that problem set 1 is due today. And please sign up for scribing and get on
the class mailing list. Note that we meet on next Tuesday instead of Monday.

2 Overview

Today we show that PARITY is not in ACy. ACy is a family of circuits with constant depth,
polynomial size, and unbounded fan-in for the AND and OR gates. We establish this result
through an application of the Switching Lemma. This result is the first use of randomization
in its full power in complexity.

Circuits were defined in previous lectures. In this lecture, we always assume that the circuits
are organized into alternating levels of AND and OR gates. We can make such an assumption
since we can convert circuits into this convenient form with only a constant factor of blowup.

The Switching Lemma is first proved by Furst, Saxe, and Sipser in FOCS 81, and readers
can find the paper in the Journal of Mathematical Systems Theory 1984. We will highlight
their work by using the Lemma though the version we prove today will not be as strong as we
claimed in the last lecture. Johan Hastad, in 1986, proved a more general and powerful form of
the Lemma, and interested readers can find it in his PhD thesis at MIT. There is also a survey
on the Lemma written by Paul Beame.

3 The Switching Lemma

Let us review some terminology. A term is an AND of literals, and a clause is an OR of literals.
We say a formula is a k-DNF if it is an OR of terms with each term having at most k literals,
and we say a formula is a /-CNF if it is an AND of clauses with each clause having at most ¢
literals. And we define the size of a formula to be the number of literals in it. Now if a formula
has variables x1,...,z,, then a p-restriction is a function that sets each x; independently to
be 0 with probability 1;” , 1 with probability 12;”, and * with probability p. A restriction fixes
some variables, and those assigned a * remain variables.

Here is a rough version of what the Switching Lemma says.

Lemma 1 Given a k-DNF formula of size s on variables x1,...,x,, a p-restriction yields a
(-CNF formula with size s’ with probability 1 — 6, provided k,¢,s,s’,p, and § are appropriately
chosen.

Hastad’s work shows that we can have s arbitrary and s’ uncontrolled. If %k is small, say
2(og 1) then ¢ is also small, say 2(1°8 n)* | We can pick p &~ O(1/k) which gives failure probability
when § = (7kp)£. However, this is not the result we will prove. Instead, in Furst, Saxe, and
Sipser’s version, s = poly(n),p = n=2/3,k = 00,f = O(1), and § = 1/poly(n). We quantify the
parameters by asserting that for all s and §, there exists £ and s’ such that the Lemma holds.
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3.1 PARITY ¢ AC,

So why does the Switching Lemma imply that PARITY is not in AC(? Say there exists a circuit
of size s = poly(n) computing parity of n bits, and it has minimal depth d. Hit the circuit with
a p-restriction, where p = n=2/3. Say the first level of the circuit consists of OR gates. The
probability that the circuit defined by the first OR gate does not have a ¢-CNF formula of size
s’ is at most 0. Let 6 = ﬁ. Then by the Union bound, the probability that there exists an OR
gate at level 2 that does not get switched is at most s§ = 1/10. This implies that with high
probability, there exists a circuit whose first level is now AND and the second level is now OR.
The ordering is switched now. By merging the second level with the third, we have circuits of
size at most ss’ = poly(n) and depth at most d — 1. If a function computes parity, then its
restriction is still a parity function. So this contradicts the minimality of d.

Does this technique also work for some other functions, say MAJORITY? Yes, a similar
argument with induction also work. Alternately, one can also show this by reducing PARITY
to MAJORITY with constant depth, polynomial size circuits.

3.2 Proof Sketch of the Lemma

The proof proceeds in three stages. In the first stage, we show that there exists a restriction such
that each of the AND gates at level 1 have constant fan-in. Then in the second stage, we apply
a second restriction so that the OR gates at the second level depend on only a constant number
of input bits. Then in the third stage, we argue that we can switch the ordering of the two levels.

Stage 1:
Hit the circuit with a ,/p restriction, i.e., z; is set to * with probability ,/p, 1 with probability
(1 —./p)/2 and 0 with probability (1 —/p)/2.

Claim: With probability 1 — m, the DNF formula is a ¢-DNF.
Fix an AND gate. Consider two cases.
Case 1: The fan-in is at least 10clog s.
Since the gate has a lot of inputs, we should expect that at least one of them is assigned 0 by
the restriction. So if after the restriction, the gate still has fan-in at least ¢, then it has no input

of 0. The probability that the gate is not zero is at most

(1_\/5)10clogs < 1
2 ~ 100poly(s)

Case 2: The fan-in is at most 10clog s.

If the fan-in is at least ¢ after restriction, then at least c¢ of inputs are assigned *. But since the
original fan-in is small, by our choice of restriction, this should happen with small probability.
More specifically, the probability that ¢ variables out of 10clog s are unset by the restriction is

at most 1061 .
clog s i
< —.
< i )Wﬁ) ~ poly(s)

We also need to make sure that the number of unset variables is not too small, since other-
wise the circuit would be constant. But this occurs with small probability by Chernoff’s bound.
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Hence, for a sufficiently large circuit, there exists some restriction such that the induced cir-
cuit computes PARITY, is polynomial sized, and every gate in the first level has constant fan-in.

Stage 2:

Now we assume that the circuit is polynomial size, has depth d, and the gates in the first level
have fan-in at most c. We want to show that there exists a random restriction such that in
the induced circuit, the gates in the second level depend on at most b. inputs, where b, is a
constant. Again hit the circuit with a ,/p-restriction. We argue by induction that for every c,
there exists b, such that the probability some second level gate depends on more than b, inputs
is small.

Fix a second level gate and call it A. When ¢ =1, A is simply the OR of variables. A dual
argument analogous to the one in Step 1 will show that it has small fan-in with high probability.
For the induction, we consider two cases, one in which A is wide, i.e., has O(log s) terms that
are disjoint. In other words, it has at least O(log s) first level gates connecting to A such that
they all have disjoint inputs. And the other case is when A is narrow.

Case 1: A is wide.

Call the disjoint terms T, ...,T,,. If after the restriction A depends on a lot of inputs, then
it is not set to 1. Since A is an OR gate, this implies all terms are not set to 1. But this
probability is small. More specifically, Pr(T; = 1 after restriction) > (1/3)¢. So the probability
that there exists a j € {1,...,m} such that T =1 is at least

1

L= (= ()" =1 s

Case 2: A is narrow.

A has at most O(logs) disjoint terms. Let H be the set of inputs appearing in a maximal
collection of disjoint terms of A. So |H| = O(clogs), and H intersects with each term of A.
Let H' be the set of variables that are left unset (assigned a * by the restriction) in H. With
an argument similar to the one in Step 1 Case 2, one can show that with probability at least
1 — 1/poly(s), |H'| is at most a constant ¢. Now, there are 2¢ possible assignments to the
variables in H'. Consider an arbitrary assignment p;. Since H intersects with each term of A,
p; will induce each term of A to have size at most ¢ — 1. By the inductive hypothesis, the prob-
ability that A induced by p; depends on more than b._q inputs is small. Set b, = ¢ + 2¢b._1.
So if A depends on more than b, inputs, then either |[H|" > ¢/, or at least one assignment to the
variables in H' causes the induced A to depend on more than b._; inputs. Both of these events
are small. This completes the proof of induction.

Stage 3:

We have shown that the gates in the second level depend on only a constant number of inputs.
Now simply switch the order of AND and OR in these two levels using the distributive law. The
blowup maybe be exponential in the number of dependent inputs, but this is still a constant.
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4 Conclusion

The general form of the Switching Lemma due to Hastad is not proved here. The argument
is more complicated; when a circuit is hit with a restriction, the observation of some terms
being canceled introduces bias. But Hastad showed that conditioning on these events only help
the outcome. Interested readers are referred to Hastad’s PhD thesis. Next time, we will cover
another proof that shows PARITY € ACj. Instead of using the probabilistic method, the proof
uses algebraic technique.
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