
6.841 Advanced Complexity Theory February 22, 2005

Lecture 5

Lecturer: Madhu Sudan Scribe: Alissa Reyzin

During the last lecture we used the Switching Lemma to show that PARITY is not in AC0.
This time we show a different proof of this fact that is due to Razborov and Smolensky (’87).
As a reminder, we defined AC0 as the class of constant depth, polynomial size circuits that
have unbounded fan-in for the OR and AND gates.

Proof Idea

Assume that some circuit is too complex to analyze directly. Then we can try to approx-
imate the function computed by that circuit by replacing the AND and OR gates by some
approximations, which creates a simpler circuit. We want to show that parity is complex even
to approximate. We now need to choose appropriate definitions of simplicity, complexity and
approximation to make this proof idea work.

We want to define a simple function as one that can be computed by a low degree polynomial
and a complex function as one that requires a high degree polynomial. That is, we think of
arithmetic operations as being the gates in our circuit, rather than the standard AND and OR
gates.

We first try to work with polynomials over GF(2) = {0, 1}. This gives us

AND(x,y) = xy | AND(x1, x2...xn) = x1x2...xn

PARITY(x,y) = x + y | PARITY(x1, x2...xn) = x1 + x2 + ... + xn

However, that means that PARITY is a degree one polynomial! Since we are looking to show
that PARITY is complex, using degree of polynomials in Z2 will not work.

What if we tried using a field of three elements so that everything wasn’t automatically
taken modulo two? Let’s use GF(3) = {−1, 0,+1}. (We could just as well use {0, 1, 2} but this
is less convenient for our purposes). Now we have

PARITY(x1, x2...xn) =

n
∏

i=1

xi

where xi ∈ {1,−1}. which gives us PARITY as a high degree function. Unfortunately, if simply
use the degree of the corresponding polynomial, then AND and OR are also “complex”. But
since AND and OR can both be computed by a single gate, this does not provide us with a
useful notion of complexity. Therefore we will need to find some way of approximating AND
and OR with lower degree polynomials.

Lemma 1 If f : {0, 1}n → {0, 1} is computed by a circuit with depth d and size s, then there
exists a set S ⊆ {0, 1}n such that |S| ≥ 3

42n and a polynomial p over GF(3) of degree (log s)O(d)

such that for every (x1...xn) ∈ S, f(x1...xn) = p(x1...xn)

In essence, this lemma states that all AC0 circuits are approximated by by simple functions.
That is, there is a low degree polynomial which will get the same answer as the original circuit
for 3

4 of the inputs. The number 3
4 is important here. For example, if we stated that we could

find the correct output for 1
2 of the inputs, the statement would be meaningless, since the

constant 0 or 1 functions would do this.

5-1

Lemma 2 If there exists a degree D polynomial GF(3)n →GF(3) and a set S ⊆ {0, 1}n such
that p(x) = PARITY(x) for all x ∈ S then every boolean function g : S → {0, 1} is computed
by a degree n

2 + D multilinear polynomial over GF(3).

Lemma 3 Any set of functions generating all functions from S to {0, 1} must have cardinality
≥ |S|.

Proof of Theorem: We assume, for the sake of contradiction, that PARITY has a depth D
size s circuit.

• By Lemma 1, we can compute PARITY on a set S such that |S| ≥ 3
42n using a polynomial

of degree (log s)O(D).

• By Lemma 4, we know that for every boolean function on the set S there is polynomial
of degree n

2 + (log s)O(D).

• We know that all polynomials are just linear combinations of monomials. But we also
no that there is a limited number of monomials of degree ≤ n

2 + D. More precisely can
bound the number of monomials N as:

N ≤
n

2
+D
∑

i=0

(

n
i

)

N ≤
n

2
∑

i=0

(

n
i

)

+

n

2
+D
∑

i= n

2
+1

(

n
i

)

N ≤ 2n−1 + D

(

2n

√
n

)

We know therefore, by Lemma 3, that 2n−1 + D
(

2n

√
n

)

≥ |S| ≥ 3
42n. If |S| were less

than exponential(nO(d)), then we would have N < 3
42n, which is impossible according to

the above. So, there is no circuit of polynomial size and constant depth that calculates
PARITY.

Proof of Lemma 3 We view the set of functions f : S → 0, 1 as vectors of size |S| over
{0, 1}. Suppose that vectors f1 through fk can generate every boolean function. Then, in
particular, they can generate all the unit functions {δx}x∈S where δx(y) = 1 if and only if
x = y. Clearly, the vectors corresponding to these functions are all linearly independent of each
other. Therefore, we have k ≥ |S|, and we are done.

Proof of Lemma 2 The idea of this proof is to switch back and forth between functions
of {0, 1} and functions on {1,−1}. So, given a function f : {0, 1}n → {0, 1} we define f̂ :
{1,−1}n → {1,−1} as the translation of f .

f̂(y1...yn) = −1 iff f(x1...xn) = 1 where yi = −1 ⇔ xi = 1

5-2

We claim that the degrees of f and f̂ will be the same since the mapping between the two
functions is linear. We have:

f̂ = 1 − 2f

yi = 1 − 2xi

f̂(y1, y2...yn) = 1 − 2f(
1 − y1

2
,
1 − y2

2
...

1 − yn

2
)

deg(f) = deg(f̂)

We define PARITY(x1...xn) =
∑

xi mod 2 and ̂PARITY(x1...xn) =
∏

xi

Assume that PARITY can be approximated by a low degree polynomial. More formally,
we let T ⊆ {−1, 1}n such that ̂PARITY is equal to q(y1...yn) on T and the degree of q ≤ D.
We take f̂(y1...yn) to be some mapping T → {1,−1}. We know that we can express f̂ as a
polynomial p(y), and therefore as a summation of monomials. We separate the monomials into
the sets A and B where the terms in A have total degree less than n

2 and those in B have degree
greater than or equal to n

2 . Then let

p1(y1...yn) =
∑

i

αiAi

p2(y1...yn) =
∑

i

βjBj

We let Cj =
∏n

i=1 yi/Bj We then know that each monomial Bj = PARITY(y1...yn)Cj . Since
this is the case, we get:

p3(y1...yn) =

n
∑

i=1

βjCj

f̂(y1...yn) = p1(y1...yn) + ̂PARITY(y1...yn) ∗ p3(y1...yn)

Since both p1 and p3 are polynomials of degree no more than n/2 and ̂PARITY has degree
D, the total degree of f̂(x) can be no more than n

2 + D and therefore, the degree of f(x) can
not be more than n

2 + D either.

Proof of Lemma 1 The idea of this proof is to probabilistically replace every gate by a
low degree polynomial that gives the correct output almost all of the time. This will give us
a circuit of low degree overall which will still output the correct result with high probability.
Here is the proof summary:

• For the sake of simplicity we can assume that our circuit contains no AND gates. This can
be done with no loss of generality, since using DeMorgan’s law we can convert any circuit
containing AND gates to one containing only OR and NOT gates with only a constant
factor increase in size and depth.

• We need to create low degree polynomials that approximate the NOT and OR gates. For
the NOT gate, we simply use p = 1 − x which clearly gives the correct value when x = 1
or x = 0. We need not worry about x = −1.

5-3

• For each OR gate, we need to randomly generate some polynomial of degree log s that
will calculate the correct value most of the time. While simply using the constant 1 would
be a reasonable approximation at the base level of our circuit, this becomes unreasonable
as we look higher up in the circuit and the distribution of inputs becomes non-uniform.

• We then show that for each gate that we replace by a polynomial, the probability that
the polynomial computes the correct value is at least 1 − 1

4s
.

• From this, we can use the Union bound to demonstrate that since the probability of an
error in each gate is at most 1

4s
, the probability of an error in the entire circuit is no more

that 1
4 and therefore our approximation works for at least 3

4 of the inputs.

• We can then show that the total degree of our approximation polynomial is no more than
log(s)O(d).

We now describe the resulting polynomial that represents the circuit. (This section is taken
verbatim from a previous year’s lecture notes).

In order to see what the function computed from the “poly-replaced” circuit looks like,
we notice that throughout the circuit we are replacing OR gates (with fan-in of size k) with
polynomials of degree log s (in x1, x2...xk). At the lowest level of the circuits, where all the
inputs to the gates (polynomials) are constants in {0, 1}, we have polynomials of degree log s.
At the second level, where the inputs to the polynomials are themselves polynomials of degree
log s, we will have polynomials of degree log2 s. In general, if we have polynomials of degree
d1 and all its inputs are polynomials of degree d2, the output will be a polynomial of degree
d1d2 (can be proved using induction). So continuing all the way to depth d, we see that the
resulting polynomial (which computes the output of the circuit) has degree ≤ (log s)d.

This polynomial will not be computing the correct value for all inputs. However, for a fixed
input and an independent, random choice of polynomials to replace the OR gates, we will show
that the probability that a (replaced) gate computes the wrong result is at most 1

4s
. By the

union bound, we get the right values throughout the circuit with probability ≥ 3/4. Notice
that this requires that the choice of polynomials be made independently of the choice of inputs
(i.e. the polynomials were not chosen to suit the input, or the other way around).

Since for a particular input we have a 3/4 probability of getting the right result when the
replacing polynomials (not necessarily the same for all gates) which produces the correct result
for at least 3/4 of all possible inputs to the circuit.

We now need only to find this log s−degree polynomials to construct our OR gates. One
way to approximate an OR gate is by considering the sum of a random subset of its inputs.
That is:

p(z1...zm) =

(

m
∑

i=1

αizi

)2

The reason we square the resulting sum is to remove the possibility of getting an output of -1.
In this way, if all of the zi are 0, then p is guaranteed to be 0. If at least one of the zi = 1, then
p = 1 with probability ≥ 2/3. So how do we make sure that the probability of an error is only
1
4s

? We do this by observing that if we compute p on several random subsets of variables and
then OR together the results of these computations, our probability of making a mistake will

5-4

decrease. Therefore, our OR-replacement polynomial will be

OR-P(p1(z1...zm), p2(z1...zm)...pk(z1...zm))

where OR-P is the exact OR polynomial. If we pick k = log s, we then get a polynomial that
is of degree 2 log s and will only make a mistake with probability (1/3)log s which is less than
our desired result of 1

4s
.

We can repeat this process independently for every OR gate in the circuit in order to
generate the polynomial that represents the circuit.

5-5

