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1 Communication Complexity

Communication complexity is interesting from a complexity-theoretic perspective because it offers
ways to prove lower bounds in various models of computation. For example, there are several
known relations to circuits, one of which we discuss in this lecture. This connection would enable
use to prove ω(lg n) bounds on circuit depth if we could prove a good lower bound on a certain
comunication game.

Communication complexity was introduced by Yao [4], and has been studied intensively since
then. Good references are the book by Kushilevitz and Nisan [1] and a series of lecture notes by
Ran Raz [3].

The most simple setup is a two-player communication game. We have two players, Alice and
Bob, who get inputs x and y, respectively, chosen from {0, 1}n. The two players want to compute
a function f(x, y) by communicating a minimum number of bits. For now, let us restrict the range
of f to be boolean. Observe the difference from information theory: while information theory
concentrates on sending a message (the data), here we are not interested in the actual data, just a
function of the players’ inputs. This allows the communication complexity to be lower than sending
the entire inputs in many cases.

Formally, the solution to a communication game is a protocol. The protocol is a tuple of
functions (s,ma,mb, fa, fb):

• f takes as argument the communication history and returns which player speaks next, or that
the protocol is over.

• ma takes as arguments the communication history and Alice’s input, and decides the next
bit sent by Alice; mb is similar for Bob.

• fa takes as arguments the communication history and Alice’s input, and decides the result
of the protocol; fb is similar for Bob. The protocol is correct if both fa and fb are equal to
f(x, y) at the end of the protocol.

The complexity of the protocol is the maximum number of bits exchanged over any pair of
inputs (x, y). The communication complexity of the problem, CC(f) is the minimum over all
protocols for f of the complexity of the protocol.

The are many variations on this model, which are useful in different setting. For example, one
can consider: randomization (with zero or bounded error), nondeterminism, message complexity
(bound the number of alternations between Alice speaking and Bob speaking), multiplayer games
(the most interesting variation being the number-on-the-forehead model, where player i gets all
xj’s except xi) etc.
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2 Techniques for Communication Lower Bounds

In the model which we defined, it is clear that CC(f) ≤ n+1 for any f , because Alice can just send
her input, and Bob can reply with f(x, y). Note that the model is nonuniform, and does not care
about computational power, so Bob can compute any function once he knows enough information.
Lower bounds of n+1 can be shown easily (see below), even for very simple explicit functions. The
interesting questions are showing bounds for some specific problems, such as the one we discuss in
the next section, which relates to circuit complexity.

Two of the most important techniques for communication lower bounds originate in Yao’s
seminal paper [4]. The first one is the fooling-set method. Consider a matrix Af of size 2n × 2n

where Af
x,y = f(x, y). The crucial observation is that communication divides this matrix into

disjoint rectangles. A rectangle is a set X × Y , with X ⊂ {0, 1}n, Y ⊂ {0, 1}n (since X,Y are
arbitrary, we care about combinatorial rectangles, not geometric rectangles). The claim is that for
any communication history, the set of inputs (x, y) for which this history materializes is a rectangle.
Indeed, assume (x1, y1) and (x2, y2) generate the same communication history. Now (x1, y2) and
(x2, y1) must still generate the same history. This can be seen by induction of the number of bits
sent. Say Alice speaks next; she decides her bit based on her input, and the communication history.
Both for y1 and y2 as Bob’s input, the communication history so far is the same (by the induction
hypothesis), so she outputs the same bit.

A correct protocol must announce f(x, y) at the end. It follows that at the end of the protocol,
every communication history leads to a monochromatic rectangle. Assume the rectangle contained
both zeros and ones. Then, there is either a row or a column containing both zeros and ones. Say
it’s a row; then, if Alice gets the input corresponding to that row, at the end of the communication
she cannot tell whether f(x, y) is zero or one, because she cannot differentiate between Bob’s inputs
leading to the rectangle.

Now consider the equality function. The matrix Af has zeros everywhere except the diagonal.
It is immediate that the number of one-rectangles is 2n, because two ones cannot appear in the same
rectangle. Similarly, it is seen that there are at least 2n zero-rectangles. Then, the communication
complexity is ≥ n + 1, because each new bit doubles the number of rectangles.

A second lower-bound technique takes an algebraic view of Af . It can be shown, using a
similar argumentation as above, that CC(f) ≥ lg rank(Af ). It is known that there exist f

for which CC(f) = ω(lg rank(Af )). However, it is still an open question whether CC(f) =
O(poly(lg rank(Af ))).

3 A Relation to Circuit Depth

We now investigate an interesting connection between communication complexity and circuit depth,
which was described by Karchmer and Wigderson [2]. For this, we need to generalize communication
complexity to consider relations. Consider a relation R ⊂ XA × XB × D, where XA, XB ⊆ {0, 1}n

and D is arbitrary. At the beginning, Alice receives x ∈ XA, and Bob receives y ∈ XB. At the end
of the protocol, each player must decide on a certain i based on his input and the communication
history. It must be the case that both players decide the same i, and that (x, y, i) ∈ R.

For a function f : {0, 1}n×{0, 1}n → {0, 1}, we define the following cannonical relation. Players
receives inputs from XA = f−1(0) and XB = f−1(1); we have D = {1, . . . , n}. The players must
decide the relation Rf = {(x, y, i) | x ∈ XA, y ∈ XB , xi 6= yi}. Clearly, if f(x) 6= f(y), there must
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be at least one bit where they differ; this is saying that the communication problem is for the two
players to find that bit.

Theorem 1 Let d(f) be the circuit depth of f on a circuit with basis (2 − AND, 2 − OR,NOT ).
Then CC(Rf ) = Θ(d(f)).

Proof We first show CC(Rf) ≤ d(f). The players know a circuit which outputs 0, respectively
1, when applied to x and y. Consider the last gate of the circuit, and assume, for instance, that
it is an AND. Thus, the output of the circuit is f(z) = f0(z) ∧ f1(z). If f(x) = 0, at least one of
f0(x), f1(x) is zero; since f(x) = 1, f0(y) = f1(y) = 1. Now Alice just outputs f0(x). If this is
zero, the players have a circuit of depth d(f0) ≤ d(f) − 1 which differentiates x and y; otherwise,
f1 differentiates between x and y and it also has depth ≤ d(f)− 1. Then, the conclusion follows by
induction on the depth. The base case is that a single bit is found (depth zero) which differentiates
x and y.

We now show CC(Rf ) ≥ d(f). This also works by induction on CC(Rf ). Assume by induction
that for any two disjoint sets XA, XB ⊂ {0, 1}n for which there is a d-bit protocol “separating”
XA and XB , there exists a depth d protocol implementing a function g : {0, 1}n → {0, 1} with
g−1(0) ⊇ XA, g−1(1) ⊇ XB . The base case is d = 0. Then, Alice and Bob know a bit which is
different for inputs with f(x) = 0 vs f(x) = 1. So the circuit can just look at that bit (this is fixed
nonuniformly), and g is the bit or the bit negated, depending on which way the separation goes.

We now prove the claim for d + 1. Assume by symmetry that Alice speaks, and her bit is P (x)
where P : XA → {0, 1}. This bit induces a partition of XA into P−1(0) and P−1(1). If the first bit
is zero, the remaining protocol has complexity ≤ d and it separates P −1(0) from XB. If the first
bit is one, we have a protocol that separates P −1(1) from XB . By induction, these protocols can
be converted into circuits C0 and C1. Observe that if x ∈ XB , both C0(x) and C1(x) output 1, by
induction. If x ∈ XA, either x ∈ P−1(0) or x ∈ P−1(1). Then either C0(x) or C1(x) outputs zero.
Then, if we take C = C0 ∧ C1, it outputs one on XB and zero on XA.
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