
6.841 Advanced Complexity Theory February 28, 2005

Lecture 8

Lecturer: Madhu Sudan Scribe: Arnab Bhattacharyya

1 A New Theme

In the past few lectures, we have concentrated on non-uniform types of computation and focused our
energies on trying to prove lower bounds for various kinds of resources. But here, we are stuck; proving
tighter lower bounds seems to be an extremely difficult problem. For example, we don’t know how
to separate randomized polynomial-time algorithms from nondeterministic exponential-time algorithms
even though intuitively, they seem to be clearly different. So, now we will shift our attention in order to
explore other goals of complexity theory and to discuss other interesting aspects of computation.

2 Motivation

Consider the MinDNF problem. Informally speaking, it is the problem of finding if a given boolean
expression can be written as a small DNF expression1. This problem frequently comes up in VLSI design
where we want to minimize the number of gates in a boolean circuit. The size of a DNF expression
is defined as the number of literals in the expression. More formally, then we can define the following
language to correspond to the MinDNF problem:

MINDNF = {(φ, k)|φ is a CNF expression and ∃ DNF expression ψ s.t. |ψ| ≤ k and ψ is equivalent to φ}

MINDNF ∈ PSPACE, but it is not known if MINDNF is in NP or in coNP. However, it seems easier
than some other PSPACE problems. Let’s try to understand this more carefully.

If a language L can be decided by a deterministic TM in polynomial time, then L is in P. Adding
non-determinism appears to make our computations more powerful. In a usual nondeterministic TM, a
branching computation accepts if any of the forked computations accept; in other words, each node in the
computation tree OR’s the computations of its children. Let us call such a TM an ∃-TM. Clearly, if an
∃-TM accepts L in polynomial time, then L is in NP. Similary, a ∀-TM is a nondeterministic TM where
a nondeterministic computation succeeds if all of the branched computations accept. If L is accepted
by a ∀-TM in polynomial time, then L is in coNP. What happens if both existential and universal
nondeterministic steps are present in a TM? Clearly such a machine can decide TQBF in polynomial
time because the machine can have an existential step for each ∃ quantifier and a universal step for each
∀ quantifier in the TQBF input formula. So, a TM with an unbounded amount of alternation between
existential and universal steps can decide any PSPACE problem in polynomial time.

Such a machine seems too powerful. Let us try to restrict computational power by restricting the
amount of alternation permitted to the TM. Suppose a TM is such that its configuration graph can be
cut into two subgraphs G1 and G2. All the nodes in G1 are existential and all the nodes in G2 are
universal, and there are no edges that go from a node in G2 to a node in G1. In other words, there can
be exactly one alternation from existential nondeterminism to universal nondeterminism. Observer that
MINDNF can be decided by such a TM; this is so because MINDNF can be formulated as:

∃ψ∀x ∈ {0, 1}n(φ(x) = ψ(x) ∧ |ψ| ≤ k)

The class of languages that can be decided by a TM with one alternation from ∃-steps to ∀-steps was
introduced by Meyer and Stockmeyer in 1973 as ΣP

2 . As we’ve just indicated, MINDNF ∈ ΣP
2 . Meyer

and Stockmeyer presented the following complete problem for ΣP
2 :

{φ|φ is a CNF expression and ∃x∀y, φ(x, y) = true}

1A boolean expression φ is in disjunctive normal form if φ =
W

n

i=1
Di where n ≥ 1 and each of the Di’s is the conjunction

of boolean literals. An example is (x1 ∧ x2 ∧ x̄3) ∨ (x3 ∧ x4).

8-1

It turns out that MINDNF is also a complete problem for ΣP
2 , although this was shown only in 2000 by

Umans. Meyer and Stockmeyer also defined the complement of the ΣP
2 language as ΠP

2 and similarly
defined ΣP

3 , ΠP
3 and so on.

3 The Polynomial Hierarchy

Definition 1 ΣP
i is the language decided by machines of the form

�� ����
?∃∀∃

i
in polynomial time.

Σp
i has the following complete problem:

{φ|φ is in CNF and ∃x1∀x2 · · ·Qixi such that φ(x1, · · · , xi) = true}

There’s a similar definition for the complement language of ΣP
i :

Definition 2 ΠP
i is the language decided by machines of the form

�� �	
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

?∀∃∀

i
in polynomial time.

Πp
i has the following complete problem:

{φ|φ is in CNF and ∀x1∃x2 · · ·Qixi such that φ(x1, · · · , xi) = true}

Definition 3 PH =
⋃

ΣP
i

Directly from the definitions, we have:

• NP = ΣP
1 and coNP = ΠP

1

• ΣP
i ⊆ PSPACE and ΠP

i ⊆ PSPACE

• ΣP
i ,Π

P
i ⊆ ΣP

i+1,Π
P
i+1

8-2

Proof Sketch: Every string in a language in ΣP
i can be turned into a string from a language in

ΣP
i+1 by adding a vacuous quantifier for the extra variable at the end of the list of quantifiers in

the original string. It can be turned into a string from a language in ΠP
i+1 by adding a vacuous ∀

quantifier at the beginning of the original list of quantifiers. Similarly for ΠP
i .

• If there exists an i such that ΣP
i ⊆ ΠP

i , then for all j > i, ΣP
j = ΣP

i .

Proof Sketch: Clearly, it suffices to show that ΣP
i ⊆ ΠP

i implies ΣP
i = ΣP

i+1. Suppose L ∈ ΣP
i+1.

Because of the complete problem in this class, φ ∈ L iff

∃x1∀x2∃x3 · · ·Qi+1xi+1 φ(x1, x2, x3, · · · , xi+1)

By assumption, ΣP
i ⊆ ΠP

i . So, with respect to the definition of ΣP
i , we can rewrite the above as:

∃x1∀(x2, x3) · · ·Q
′

i+1xi+1 φ(x1, (x2, x3), · · · , xi+1)

Here φ is modified to take i input variables. Thus by joining the two universal quantifiers and
modifying the boolean function slightly, we see that L ∈ ΣP

i . So, ΣP
i+1 = ΣP

i .

The implication in the last claim, that for all j > i, ΣP
j = ΣP

i , is known as collapse of the polynomial
hierarchy. There is a belief among complexity theorists that PH does not collapse. Observe that this is
a very strong belief, stronger than the P 6= NP or NP 6= coNP conjectures. However, there is not much
independent “evidence” supporting it, and one can very well imagine it being false. The belief that PH
does not collapse is important because the negation of other unproven conjectures would make it false.
For example, if NP were shown to have polynomial-sized circuits, then PH would collapse. If randomized
polynomial time algorithms were shown to coincide with deterministic polynomial time algorithms, then
PH would collapse. These types of implications make the PH collapse conjecture a central hacking point
for complexity theorists.

4 Alternation as a Resource

To explore how adding alternation affects computational power, we define the following complexity
classes:

• ATIME(t(n)) = {L|L is decided by a machine with unbounded alternation using O(t(n)) time}

• ASPACE(s(n)) = {L|L is decided by a machine with unbounded alternation using O(s(n)) space}

• ATISP(a, t, s) = {L|L is decided by a machine with alternation quantified by a, time quantified by t
and space quantified by s}

Even though NL = coNL might suggest that alternation would not be very helpful in reducing space
complexity, unbounded alternation is very powerful. We have the following results:

Theorem 4 SPACE(s) ⊆ ATIME(s2) ⊆ SPACE(s2)

Proof Sketch: The proof of the first containment is very much like that of Savitch’s theorem. We will
construct an alternating TM to simulate a deterministic TM M that uses s-space. Suppose M has less
than 2ks configurations reachable in s space. Then, we have to determine if M can go from the initial
ci configuration to the final cf configuration in this much time. An alternating procedure that tests if
configuration c2 is reachable from c1 within time t first existentially branches to guess a configuration
cm between c1 and c2 and then universally branches to test recursively that both the paths between c1
and cm and between cm and c2 can be traversed in t/2 time. So, using this alternating procedure, an

8-3

alternating TM can test if M can go from ci to cf in the required amount of time. The time needed for
the test is O(s) to write a configuration at each recursive step times log 2ks = O(s), the depth of the
recursion tree. So, the total time needed is O(s2).

To get the second containment, we can do a straightforward simulation of the alternating machine
with a deterministic TM. For example, the deterministic TM can do a depth-first-search of the alternation
tree to determine which nodes in the tree are accepting. The depth of the recursion stack in the DFS is
the time complexity of the alternating algorithm. At each recursive step, we need only a constant amount
of space to store which nondeterministic choice was made and whether the branching was existential
or universal. Thus, the space complexity of the deterministic simulation is the same order as the time
complexity of the alternating machine.

And even more suprisingly,

Theorem 5 TIME(2s) ⊆ ASPACE(s) ⊆ TIME(2O(s))

Proof Sketch: We’ll show the second containment first. Suppose we have an alternating TM using
space O(s). Then the depth of the alternating tree will be at most 2O(s) and the total number of nodes

will be at most 22O(s)

. But the number of configurations is also at most 2O(s). So, if we collapse identical
configurations in each row of the alternation tree into single nodes, then we have a 2O(s) × 2O(s) DAG,
and so 2O(s) is enough time to traverse this graph.

The first containment is a bit harder to show. Consider the tableau of a DTM A with time complexity
O(2s). We will construct a machine M that checks if A has contents σ on cell i of the tableau after t
steps of computation. To do this, M first existentially guesses contents σ1, σ2, σ3 of cells i − 1,i,i+ 1
at time t − 1 to verify if they would yield σ according to A’s transition function. Next, M branches
universally to recursively check whether A has contents σ1, σ2 and σ3 in the cells i − 1, i and i + 1
respectively at time t− 1. At any one point of this checking, M needs to store a pointer to a constant
number of configurations. Hence, the space complexity of M is ASPACE(s).

5 Conclusion

Next lecture, we’ll show the following:

• SAT ∈ L ⇒ SAT /∈ TIME(n1+ε) (for some ε > 0).

• NP ⊆ P/poly ⇒ PH collapses

We can attempt to apply some of the results we’ve learned here to nonmathematical issues. For
example, consider a debate between two contestants in an election. Say candidate 1 claims x ∈ L and
candidate 2 claims x /∈ L. Computationally, candidate 1 is like an existential step in an NTM and
candidate 2 is like a universal step. The interaction with the audience can be modeled as a polytime
process. So, with an unbounded number of alternations between the two candidates, the debate system
has the power of a ATIME(poly) TM. By Theorem 4, therefore, such a debate system decides languages
in PSPACE. If the candidates do not have anything to say in the debate (i.e. there is no alternation),
then the debate system decides languages in P. And if the contestants alternate a bounded number of
times, then the debate decides a language in PH. Thus, if it turns out that PH = PSPACE, then in
some sense, a full-fledged debate will only be as interesting as a debate with a fixed number of rounds.

The complexity class PSPACE has been used extensively to analyze the complexity of games. When-
ever winning or losing a game is a function only of the current board configuration (like Go and not
like chess2), the game is in PSPACE. This is so because fundamentally, alternation describes a game
between two players, the player with existential moves and the player with universal moves; because
ATIME(poly) = PSPACE, any such game where a polynomial number of configurations are visited from

2If a configuration repeats in chess 3 times, then the game ends in a draw.

8-4

start to end is in PSPACE. Now contrast such hard games to a game like Solitaire where a computer
randomly deals out a deck of cards. Is playing Go against a human expert as intellectually challenging
as playing Solitaire against a random distribution of cards? Surprisingly, it turns out that there are
distributions of cards for which Solitaire is as challenging as Go! Configurations in Go can be reduced
to Solitaire card configurations (although it is not clear if such configuration would actually arise in a
real Solitaire game). A random instance of Solitaire can be shown to be hard.

8-5

