
6.841 Advanced Complexity Theory March 16, 2005

Lecture 13

Lecturer: Madhu Sudan Scribe: Victor Chen

1 Overview

Today we study the complexity of counting problems and define the classes #P , P#P. In
particular, we will examine the permanent of a matrix and its relation to #P-completeness
and random instances; this is quite a remarkable problem with a central position in complexity
theory. And finally, we will start Toda’s landmark theorem, which states that PH ⊂ P#P.

A good reference for today’s lecture is Chapter 18 in Papadimitriou’s textbook.

2 #P

There are some natural questions that come up with nondeterminism. One is searching; given
a problem, find a solution. Another is optimization - find the best solution. There is a third
notion, namely counting how many solutions there are to a given problem, which we have yet
to explore. To do so, let us first define #P. #P is defined to be the class of counting functions
f : Σ∗ → Z, such that there exists a polynomial time bounded machine M such that ∀x,
f(x) = |{y|M(x, y) accepts}|.

Some examples include #SAT, counting the number of satisfying assignments in a formula,
and #CLIQUE, counting the number of cliques in a graph. As an exercise, note that the
problem of counting the number of cliques in a graph reduces to the problem of counting the
number of cliques at least a specified size.

2.1 PERMANENT

One of the most interesting problems in #P is the problem of counting the number of matchings
in a graph, which is equivalent to finding the permanent of a matrix. (We will show this
equivalence very shortly). Recall that a (perfect) matching in a graph G on n vertices is
a subgraph H of degree exactly one at each vertex. Clearly MATCHING, the problem of
deciding whether a given graph has a matching, is in NP. It is not obvious how to show this
is in coNP. Tutte in the 40s proved many fundamental results on matching, and Edmonds
in the 60s finally showed that MATCHING is in P. Incidentally, it was this work that led
Edmonds to define polynomial time to capture our notion of efficiency. The counting version
of MATCHING, #MATCHING, is simply counting the number of matchings in a graph. Note
that unlike #SAT or #CLIQUE, the decision version of #MATCHING is easy yet the counting
version is hard.

Clearly #MATCHING ∈ #P. Now we show the equivalence between the number of match-
ings and the permanent of a matrix. Consider a bipartite graph and its associated adjacency
matrix A = {aij}. It is easy to see that a matching in an n by n bipartite graph is given by a
permutation π : [n] → [n]. The edges in a matching simply match up each vertex on the left

13-1

with a unique vertex on the right. Then the number of matchings in a graph is simply

∑

π∈Sn

n∏

j=1

ajπ(j) = perm(A).

In other words, #MATCHING=PERMANENT. Syntactically, this looks like the definition
of the determinant of a matrix A. Recall that

det(A) =
∑

π∈Sn

(−1)sign(π)
n∏

j=1

ajπ(j),

where sign(π) is 1 if the number of swaps needed to sort π into identity is odd and 0 other-
wise. Determinant is also a counting function, and we know that it can be computed efficiently.
So perhaps the similarity in the algebraic definitions of the perm and the determinant suggest
that we may compute the perm by using the determinant somehow. Indeed, one of the earliest
approaches in trying to compute perm(A) involved making an appropriate transformation on
A to some other matrix A′ with 0,± entries, such that perm(A) = det(A′). However, it can be
shown that this approach does not work since the permanent can be as large as n! whereas the
determinant of a 0,± matrix can be at most 2n. Nonetheless, this approach works when the
graph associated with the matrix is planar.

2.2 #P-completeness

Valiant showed that PERMANENT is #P-complete. We will not show this in class. Since a
self-contained proof is in Papadimitriou’s book, we will briefly make some remarks.

To prove completeness, we need a reduction that takes a function f and instance x and
outputs Ax such that f(x) can be computed efficiently from perm(Ax). The key observation is
that most reductions we have seen in complexity so far are parsimonious, that is, the reduction
preserves the number of solutions. Most importantly, Cook’s reduction is parsimonious. In other
words, if the reduction takes x and computes φ, then the number of satisfying assignment to φ
is f(x)k(|φ|), where k(·) is an easily computable function. Note that the function k depends not
on φ but just on its length. To show that #SAT reduces to PERMANENT, Valiant constructed
appropriate gadgets such that if the reduction takes φ to A, then perm(A) = #SAT(φ)+g(φ)2n2

.
Note that #SAT(φ) ≤ 2n, so we can compute perm(A) modulo 2n2

. This is sometimes called
an affine parsimonious reduction.

2.3 Some Remarks

In complexity, it is much easier to work with languages than functions. We would like to define
languages for #P. However, this is not as simple as SAT. Instead, we shall resort to letting
P#P capture our notion of languages.

Historical Notes: The complexity of counting led Valiant to define an algebraic version of
NP. And the problem of approximate counting has developed into a beautiful area in its own
right and sampling techniques.

13-2

3 Random Instances

Looking at the algebraic formalization of the permanent, there should be no reason that any
particular instance should be easy to compute. In fact, we have the following result due to
Lipton.

Theorem 1 Suppose there exists an expected polynomial time algorithm that computes perm(A)
mod p for a random prime p ∈ [2n] and a random n by n matrix A ∈ Zn×n

p . Then there exists

a randomized polynomial time algorithm that computes the permanent.

Note that the randomness of the algorithm in the antecedent of the theorem is over A and
p, whereas the randomness of the second algorithm is over its internal coins. The typical clas-
sification of problems into complexity classes depends on worst case analysis, which does not
always correspond to how algorithms are used in practice. However, here Lipton’s result makes
a powerful statement; random instances of the permanent is as hard as worst case instances.
We now proceed to give a proof.

Proof Suppose we treat the entries of an n by n matrix M as indeterminates. Then
perm(M) =

∑
π

∏n
i=1 Xi,π(i), which is a function of n2 variables with degree n. Say we wish

to compute perm(M) with permanent ≤ 2
√

n, e.g., when M has dimension ≤ 2
√

n. Pick a
random prime p ∈ [2n]. With high probability, p ≥ 2n/n2. Pick a random R ∈ Zn×n

p . Define
g(t) = perm(M + tR), which becomes a function in variable, namely t, with degree at most n.
We want to compute perm(M) = g(0). This can be done if we know all the coefficients of g.
Since g has degree at most n, we will compute g(i) for i = 1, . . . , n, which we shall see is easier
to compute. And thus, these n + 1 points will define g.

Since we are working over Zp, for i = 1, . . . , n, iR is a random matrix iff R is random. So
M + iR is a random matrix as well. So g(i) = perm(M + iR) is the permanent of a random
matrix.

By assumption, a random instance of the permanent is easy to compute. In particular,
suppose we are given an algorithm B such that B(A, p) computes perm(A) mod p in expected
n3 time, for random A and p. Then by our assumption, B(A) must compute perm(A) mod p
in at most n10 time for all but n−5 fraction of (A, p). So by the Union bound, with probability
1 − n−4, we have the correct values of g(1), . . . , g(n).

4 Toda’s Theorem

In a complete surprise in 1989, Toda showed that PH ⊂ P#P. We give a quick introduction
and save the proof until after spring break. Toda defined operators like BP, ⊕, and P that act
on complexity classes. These operators essentially capture questions like is there a majority of
instances in the language with the following properties. In particular, L ∈ ⊕ · C if there exists
M , L(M) ∈ C, such that

x ∈ L iff |{y|M(x, y) accepts}| is odd.

13-3

This allows us to ask for the least significant bit, which is a much richer notion than the
most significant bit (since we can approximate the permanent). 1

Also, we can define L ∈ BP ·C if there exists M , L(M) ∈ C, such that x ∈ L implies
Pr[M(x, y) accepts] ≥ 2/3, and x 6 inL implies Pr[M(x, y) accepts] ≤ 1/3.

We will define more operators next time and what they mean next time. In particular, we
will show BP⊕P ⊂ P#P and Σp

i ⊂ BP⊕P. The latter can be shown by an inductive argument
roughly as follows.

Σp
i ⊂ Σ · BP⊕P, by induction

⊂ BP⊕BP⊕P base case

⊂ BP BP⊕⊕ P by commuting the operators

⊂ BP⊕P by collapsing the operators.

The magic of these operators will be fully explored next time.

1As an exercise, show that approximating #P to a multiplicative factor can be done in PH. Very recently,

Jerrum, Sinclair, and Vigola showed in 2001 that approximating the permanent can be done with a BPP algo-

rithm.

13-4

