
6.841 Advanced Complexity Theory March 30, 2005

Lecture 15

Lecturer: Madhu Sudan Scribe: Mariana Baca

1 Overview

The idea of studying Interactive proofs began when problems started to arise in cryptography. In
the old days, if you needed to identify yourself, you would type a password and send it clear-text.
Because this made it easy to intercept and have someone else use your password, it would be nicer
if one could prove one knew the password x, without actually having to type it out. Goldwasser,
Mikali and Rakoff decided to explore what it meant to write out a proof and came up with the idea
of an Interactive Proof.

2 Classical Notion of a Proof

Definition 1 A proof has two parts: It consists of a theorem T ⊆ Σ∗, and a proof Π ⊆ Σ∗. The
validity of Π for T is checked by a verifier V .

There are two properties a correct proof should have: completeness and soundness.

Completeness: T ⇒ ∃Π s.t. V (T,Π) accepts.

Soundness: T ⇒ ∀Π V (T,Π) rejects.

Classical proofs of bounded length with polynomial verifiers are in NP-hard because they only
involve one existential quantifier. An alternate, less static notion of a proof can be developed.

3 Interactive Model of a Proof
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Definition 2 An interactive proof consists of a dialogue between a prover P and a verifier V, where
V can ask a series of questions q1, q2...and P can respond with a series of strings π1, π2.... in order
to prove T . V (T, q1, q2, π1, π2) ∈ {accept, reject}.

It is important to specify that V must not be poly-bounded in its range of questions, nor should
it ask questions in a deterministic fashion. If so, P could just send either all possible πn or a specific
sequence of π1...πn, and interaction would not be necessary.
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4 Graph Non-Isomorphism

Distinguishability (whether two things are provably different) is a problem that is hard to solve
without interaction but becomes easy with it. Let us look at the example of Graph Isomorphism
to see how interaction can be used to solve this problem.

(G1, G2) are two graphs with n vertices.

Definition 3 G1 ' G2 (G1 is isomorphic to G2) if ∃Π : {1...n} → {1...n} s.t. for each edge i → j
in G1 Π(i) → Π(j) is an edge in G2.

1

2

5 4

3 A

B

E D

C

G1 G2

If G1 ' G2, all that is required for a proof is the permutation. But proving G1 6' G2 is trickier.

Interactive Proof for Graph Isomorphism

• V picks Π : {1...n} → {1...n} and b ∈ {1, 2} at random. V then generates G = Gb permuted
by Π.

• If G1 6' G2, P can ”guess” the correct graph that was permuted (or search in exponential
time).

• If G1 ' G2, P has a 1/2 chance of guessing which graph was permuted. P returns c ∈ {1, 2},
which is its guess for b.

• V accepts if c = b. With repeated iterations, the probability of guessing correctly when
G1 ' G2 vanishes.

5 Some Formalisms about IP

There are three issues to discuss when defining an interactive proof. The first deals with round of
interaction.

NP needs ≤ 1 round of interaction.

GNI needs ≤ 2 rounds of interaction. ∈ PH

Would an interaction which requires poly(n) rounds of interactions = PSPACE?

Claim 4 Number of rounds of interaction does not matter within constant factors. A protocol that
can be run in r(n) rounds can be run in r(n/2 + 1) rounds.
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The second issue that arises regarding interactive proofs concerns whether randomness (coin-
tossing) should be public or private.

Babai came up with a concept similar to interactive proofs called Arthur-Merlin proofs. In such
proofs, Arthur is a polynomial time verifier while Merlin (who has magic) can concoct exponential
time proofs through public coin tosses. Arthur gives Merlin two challenges: The first involves
marrying all the ladies of the court to the Knights in a compatible way. This problem is easy to
verify: all Merlin has to do is find whether the number of compatible girls is less than the total
number of Knights to find that there is no perfect matching.

The second problem involves sitting all the Knights at the round table without having them
fight their neighbors. This is a Hamiltonian Cycle problem, and thus is in co-NP and there is no
easy counter-example or certificate, but can be proven through interaction.

In Goldwasser, Mikali and Rakoff’s GNI proof, coins were tossed privately. Is there a difference
between public and private coin tosses?

Claim 5 Goldwasser and Sipser proved that whether the coins were public or private was irrelevant.
to transform a private coin toss proof to a public coin toss proof only requires a constant increase
in interaction, which is previously claimed to be irrelevant.

The third issue that arises from interactive proofs is whether the error is one-sided or two-sided.
Since BPP is shown to be in the Polynomial Hierarchy, and we have previously seen a protocol for
transforming BPP into a one-sided error, this issue is also irrelevant.

Thus, two classes arise from interactive proofs:

• IP: Languages that admit proofs of membership with poly(n) rounds of interaction.

• AM: Languages that admit proofs of membership with 2 rounds of interaction, where Arthur
goes first, and Merlin follows.

NP ⊆ AM = AM [constant rounds of interaction]⊆ PH ⊆ PSPACE

NP ⊆ AM ⊆ IP ⊆ PSPACE

Later we shall prove IP = PSPACE.

6 Protocol for Distinguishability

Di on {0, 1}k is a function: Di:{0, 1}
k −→ [0, 1] s.t. ΣxDi(x) = 1

D1 is ε far from D2 if Σx‖D1(x) − D2(x)‖ ≥ 2ε

The distribution D on {0, 1}k is samplable if ∃C : {0, 1}n −→ {0, 1}k , y ∈ {0, 1}n

s.t. Pr[C(y) = x] = D(x).

Definition 6 Distinguishability [SAHAI-VADHAN] is defined as (1,2) with sample distribution D1

and D2 are distinguishable if D1 is (1-ε) far from D2, and are not distinguishable if D1 is ≤ ε far
from D2.

Sahai-Vadhan Distinguishability is in AM, and problems like the Shortest Vector problem in
lattices is in AM

⋂
co-AM.
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7 Protocol for Approximate Counting [Goldwasser and Sipser]

Our goal is to prove that given a set S ⊆ {0, 1}n, membership in S can be verified in P (or NP). in
the Good case, |S| ≥ 2/3 ∗ 2n. In the bad case, |S| ≥ 2n/n2. We shall prove it for the good case.

The protocol goes as follows:

• Prover P sends y1, y2, ...yn ∈ {0, 1}n to V

• Verifier V picks x ∈ {0, 1}n, and asks P to prove x + yi ∈ S for some i.

• P submits a proof (i, x + yi) n P or NP time, depending on what we are trying to prove.

Results about AM:

If AM runs in K (a constant) number of rounds,

AM[k rounds] = BP * ∃ * BP * ∃ ... BP * ∃ * P

Using what we learnt from Toda’s theorem, we can switch the existential quantifier and BP,
and reverse their order. (∃ ∗ BP ⊆ BP ∗ ∃). Then, we can collapse all the BP’s and existential
quantifiers to a single BP and existential quantifier.

Define IP = AM w/ private coins and AM = AM w/ public coins. Thus, IP[2] ≤ AM [O(i)
rounds].

S

accept

reject

q
q

R
Q

random public coins

questions

write optimal
question

Σq∈Q|Sq |
|R| = Acceptance probability for S.
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