
6.841 Advanced Complexity Theory April 6, 2005

Lecture 17

Lecturer: Madhu Sudan Scribe: Alexey Spiridonov

1 PSPACE ⊆ IP

We will show this inclusion using straight-line programs of polynomials (SPP). First, we will
show that SPP ⊆ IP , and then PSPACE ⊆ SPP . In the previous lecture, we showed that the
permanent has an interactive proof, and so IP ⊆ PSPACE. Putting the two together, we will get
IP = PSPACE. Before carrying out these proofs, we need to introduce SPP .

1.1 Straight-line programs of polynomials

Let’s start with a quick refresher of straight-line programs (SP). Suppose we have input bits
x1, . . . xn. Then, a straight-line program is a computation of the following form:

y1 ← x1 + x3

y2 ← y1 × x2

y3 ← y1 + y2

· · ·
yi ← yj × yk with j, k < i,

where yi might alternatively use some of the inputs xl, or use + instead of ×.
We can rewrite this idea to use polynomials instead of intermediate variables. Let x be an n-bit

string consisting of x1, . . . , xn. Then, we can define the following polynomials:

p1(x) ← x1

p2(x) ← x2 × p1(x)

p3(x) ← p1(f3(x)) + p2(g3(x)) (1)

· · ·
pi(x) ← pk(fi(x)) + pj(gi(x)),

where fi, gi are easy-to-compute (poly(n) time) functions from {0, 1}n → {0, 1}n. Except for one
adjustment, this is how we get SPP .

The motivation for introducing these polynomials is that we would like to emulate the proof that
#P ⊆ IP . That proof operates on the following principle: for a complete verification, we’d need to
compute a 2n-sized formula

∑

x∈{0,1}n

f(x1, x2, . . . , xn) =
∑

x̃∈{0,1}n−1

f(0, x2, . . . , xn) +
∑

x̃∈{0,1}n−1

f(1, x2, . . . , xn)

(with f = 1 on satisfying assignments, and 0 otherwise). Instead, we rewrite these sums as low-
degree polynomials formulas over a field F (having 0, 1,−1 all distinct): p = p′(0) + p′(1); now,
instead of verifying both the values of p′(0) and p′(1) to check the value of p, we evaluate p′ at a
random value z. This leaves only O(n) checks to be made, each one of which is polynomial in n.

The idea of SPP is to retain this recursive, efficiently checkable structure, while having enough
power to perform PSPACE computations. There is one problem with the formulation in equation

17-1

1. The ith polynomial references arbitrary polynomials with indices below i. Thus, we cannot
combine verifications, and the verifier migh need to verify, say, p1 an exponential number of times.
We fix this by requiring that pi only reference pi−1. Then, we can use the same method as before
to show SPP ⊆ IP .

2 SPP ⊆ IP

2.1 Proof Protocol

We will be working over the field F, using SPP programs computing with n variables. The depth
(number of statements in the SPP program) will be L, and we require that fj , gj be easy to compute,
and chosen such that all the pi are polynomials of degree at most D. This is a strong, and somewhat
nebulous requirement. However, we will later see that for the purposes of showing PSPACE = IP

it isn’t hard to satisfy (we get fj , gj linear).
With these in mind, we can work out the interactive proof protocol. Suppose the prover claims

that pL(x) = 1. The protocol is as follows:

1. The prover computes u = fL−1(x) and v = gL−1(x) and defines the line

l(t) := tu + (1− t)v.

2. Then, h(t) := pL−1(l(t)) should be a degree D polynomial in t, and the verifier can request
the coefficients of h(t) from the prover.

3. She then checks that h(0) combined with h(1) give pL(x); if this consistency check fails, the
verifier rejects.

4. Otherwise, she chooses a random value in z ∈ F, and asks the prover to compute h(z), who
returns the value α. This sets up a situation analogous to the initial proof of pL(x) = 1, except
now the polynomial is pL−1, evaluated at l(z), and the claimed value is α.

5. The verification proceeds recursively, starting from step one, finishing after L such iterations.

2.2 Analysis of protocol

There are three things to check about the above protocol:

1. Complexity – it’s easy to see that the verifier runs in poly(n, D, L, log |F|). All The first step
is poly(n); the second takes poly(D), the third is constant-time, the fourth is again poly(n).
The process is iterated L times, which gives the desired bound.

2. Completeness – every valid claim is accepted with probability 1. This is obvious: we don’t
reject unless there is an inconsistency.

3. Soundness – invalid claims are accepted with probability < LD
|F| . The analysis proceeds as for

#P ⊆ IP . So, we can pick a field larger than LD, and repeat the protocol some number of
times to get arbitrarily good rejection probabilities.

17-2

3 PSPACE ⊆ SPP

For any PSPACE machine M , we’d like to simulate it with an SPP program. Suppose our
PSPACE machine uses space s(n), and let a, b ∈ 0, 1, q1, . . . qk

s(n) be two valid states of the machine
(qk denotes a head with internal state k). Represent a, b as vectors over some large enough field F

(so qk become field elements not equal to 1). Also, for simplicity, we modify the rules so that any
termination state (rejection or acceptance) transitions to itself in one step.

Define the function Q0(a, b) of two valid states to be 1 if the machine gets from a to b in exactly
1 step, and 0 otherwise. In one step, the machine can only make changes within a radius of one
cell around the current head position. Consider some 6-tuple ai−1, ai, ai+1, bi−1, bi, bi+1; it’s a valid
transition if ai contains the head, and the bj match the action the machine should have taken. Then,
Q0(a, b) = 1 if and only if there is exactly one valid transition among all the 6-tuples for the given
a and b. It’s easy to write a polynomial of constant degree in every variable, which is 0 on invalid
6-tuples, and 1 on valid 6-tuples. Since a is valid, there is only one head on the tape. So, the sum of
these polynomials over all 6-tuples in a, b will be 1 if and only if there is exactly one valid transition
on the tape. Thus, Q0 can be written as an efficiently computable polynomial of degree C in every
variable on Fs(n).

Now, define

Qi(a, b) =
∑

c valid state

Qi−1(a, c)Qi−1(c, b).

By induction, we may assume Qi−1 is of degree at most C in every variable. That means that
Qi−1(a, c)Qi−1(c, b) is of degree at most C in each ai and bi, and of degree ≤ 2C in ci. We are
summing over constant values of c, so the latter degree is irrelevant. Hence, Qi(a, b) is of degree
≤ C in every variable.

The sequence of polynomials Qi is not quite in SPP yet: we have a “fixed” number of inputs
2s(n), constant degree C polynomials, program depth s(n), but the width of these polynomials is
2s(n) – we are adding together too many terms. Fortunately, we can reduce the width by splitting
up these additions into many (but still polynomial in s(n)) steps.

Recall that our valid states were defined on an alphabet of {0, 1, q1, . . . , qk}, but every valid state
had only one occurence of a qi. For convenience, we recode this so that bits 1... log s(n) store the
position of the head, log s(n)+1 . . . log s(n)+ log k store the head’s internal state, and the following
bits store the actual tape. Now the alphabet is just {0, 1}s(n)1.

Define

Ri,j(u, w1 . . . wj , v) =
∑

wj+1,...,ws(n)∈{0,1}

Qi−1(u, w)Qi−1(w, v) =

= Ri,j+1(u, w1 . . . wj0, v) + Ri,j+1(u, w1 . . . wj1, v),

with Ri,s(n)(u, w, v) = Qi−1(u, w)Qi−1(w, v), and Qi(u, v) = Ri,0(u, , v). We thus get a sequence
of s(n)2 efficiently computable polynomials, each one depending only on the preceding one, with
degrees still bounded by C. They can be evaluated in the following order:

Q0, R1,s(n), R1,s(n)−1, . . . , R1,1, Q1, R2,s(n), . . .

This is an SPP program, and Qs(xinitial , xaccept) = 1 (assume without loss of generality that
the machine has one accept state) if and only if the initial state accepts in the PSPACE program.
We must start with a PSPACE machine for this procedure to work, because otherwise the SPP ’s
parameters will not be polynomial in the original input size n.

1And, we’ll pretend that that all strings correspond to valid machine states; this isn’t quite the case if s(n) or k

are not powers of two. In this case, the formulas for Rij actually need some adjustments to exclude the invalid states.

17-3

4 History of IP & PCP

Interactive proofs were first independently investigated by Goldwasser, Micali, Racoff and Babai.
GMR termed their construction IP (for interactive proof), which was initially based on hidden coins:
the verifier could toss coins that would remain unknown to the prover. IP allowed polynomially
many rounds of interaction. Babai’s class was named AM (for Arthur-Merlin), where King Arthur
was a BPP verifier, and Merlin an unbounded prover (from whom Arthur didn’t, and couldn’t
hide his coin tosses). In AM , Arthur and Merlin would have just one round of interaction. The
complexity classes with k rounds of interaction were termed AM [k] and shown to be equivalent to
AM for all constant k. It was also shown that the hidden coin assumption in IP was unnecessary.
Thus, the only remaining distinction between AM and IP is that IP permits polynomially many
rounds of interaction. AM is contained in Π2P , while, as we have seen, IP = PSPACE. Thus, it
seems that allowing polynomially many rounds of interaction strictly increases the computing power.

Babai’s introduction of interactive proofs was driven by an interest in complexity classes, while
GMR were studying the cryptographic implications of the technique. For example, they were in-
terested in the ability to prove that one has the solution to a hard problem (e.g. hamiltonicity or
3-coloring) without revealing the solution itself. Techniques like these are called “zero-knowledge
proofs”; to construct these, GMR relied on one-way functions.

Another development was the introduction of several provers by Ben-Or, Goldwasser, Kilian and
Widgerson. 2-prover IP has two provers who may have previously agreed upon a strategy, and have
huge resources, as before. However, during the interactive proof they are not allowed to exchange
information. The verifier can ask them questions in any order (e.g. prover 1, prover 1, prover 2, 2,
1, 2, 2). Clearly, this class (called 2IP) is at least as powerful as IP – the verifier could just ignore
one of the provers. BOGKW proved that with 2 provers, no one-way functions were necessary for
zero-knowledge proofs.

Similarly, one can define 3IP, 4IP, . . . MIP (the union of mIP for all constant m). It’s natural
to ask if those classes get progressively more powerful. It turns out that the answer is no; Fortnow,
Rompel and Sipser showed that all multiple-prover systems are equivalent to OIP – oracle interactive
proof. OIP is an interactive proof system with no memory – it commits to all its answers before any
interaction happens. An oracle can be viewed as a static construction, possibly exponentially big
in input size. We check a polynomially-sized part of the construction, which is enough to conclude
that with high probability a correct proof exists (even though there may be many mistakes in the
oracle itself).

One can easily simulate any MIP computation using an oracle: to simulate prover n, the verifier
would just ask it “what would prover n say after being asked the following questions?” FRS also
proved the more difficult converse: 2IP can simulate OIP . Informally, having more than one prover
forces the provers to essentially commit to an answer to every question before the interaction starts.
Otherwise, the verifier would be able to ask the two provers a sequence of questions that would
expose the inconsistency with non-zero probability.

So, we have the following relations between interactive proof types:

IP ⊂ 2IP = 3IP = · · · = MIP = OIP.

The reverse inclusion, 2IP ⊂ IP is believed to be false; here is a justification of sorts. We have
shown that IP = PSPACE; it can also be proved that

OIP = 2IP ⊆ NEXPTIME.

In 1990, Babai, Fortnow and Lund showed that NEXPTIME ⊆ OIP , a proof which is works
on a technical strengthening of PSPACE ⊆ IP . Since it is generally believed that PSPACE (

NEXPTIME, IP (2IP would follow. Using the BFL result, in 1991, Feige, Goldwasser, et al
showed that approximating CLIQUE is hard.

17-4

The concept of a large proof that one can check in a few places (inspired by OIP) led to the
creation of the probabilistially checkable proof classes PCP [γ(n), q(n)]. In this notation, introduced
by Arora and Sajra in 1992, γ(n) denotes the number of bits of randomness used by the verifier (as
a function of input size n). The parameter q(n) is the number of bits queried from the oracle by the
verifier – how much of the proof was examined. In this notation, OIP is just PCP [poly(n), poly(n)] =
NEXPTIME.

It’s natural to ask what other complexity classes we can get by varying q and γ. Looking at the
definitions of NP and BPP , it’s easy to write them in the new notation:

PCP [0, poly(n)] = NP

PCP [poly(n), 0] = BPP.

A follow-up paper by Babai, Fortnow, Levin, and Szegedy showed that

NP ⊆ PCP [poly(log n), poly(logn)]

. This is remarkable: in the classical formulation of an NP problem, we have proof of length
poly(n). In the PCP formulation, our proof becomes 2poly(log N) long, which isn’t polynomial,
but is certainly subexponential. However, the verifier uses only poly(logN) bits of the proof, and
poly(logN) bits of randomness; at the cost of a slight proof size blow-up, we got much quicker
(probabilistic) verification.2

Much improved results followed. Arora and Safra showed NP ⊆ PCP [O(log n), O(
√

log n)] and
then Arora, Lund, Motwani, Sudan, and Szegedy showed that

NP ⊆ PCP [O(log n), O(1)].

H̊asted later gave a proof of NP ⊆ PCP [O(log n), 3] so that valid statements are accepted with
probability almost 1, and invalid statements are accepted with probability . 1

2 . (Note that the
exact number of query bits is not interesting except when mentioned in conjunction with the error
probability. Specifically, it is always possible to reduce the query complexity from any constant to
three while increasing the error probablity to a constant bounded away from one. H̊astad’s result is
special in that it gets very low query complexity with very low error-probability.)

2The actual result of Babai, Fortnow, Levin, Szegedy is essentially stronger parameter and could have easily been
used to show NP = PCP [logn, poly(log n)]. While their result does not focus on the randomness parameter, they do
mention that their proof sizes are polynomial in the size of the classical proof and indeed nearly-linear.

17-5

