
6.841 Advanced Complexity Theory April 13, 2005

Lecture 19

Lecturer: Madhu Sudan Scribe: Kevin Matulef

1 Today

• We finish the proof that NP ⊆ PCP[poly log n, poly log n].

• We give another PCP construction, showing NP ⊆ PCP[poly(n), O(1)].

2 Review: Graph Coloring PCP

Last time we began a PCP construction for graph 3-colorabilty. Recall that

• The vertices were labeled by elements of some sufficiently large field F.

• The edges were given by a function E : F × F → F.

The prover writes down

• A coloring given by a polynomial χ : F → F where degree χ ≤ n

• A polynomial A : F → F defined by A(x) = χ(x)(χ(x) − 1)(χ(x) − 2) so
that A|V = 0.

• A polynomial B : F×F → F defined by B(x, y) = E(x, y)
∏

j∈{−2,−1,1,2}(χ(x)−

χ(y) − j) so that B|V ×V = 0

Last time we discussed how a verifier can check this proof. All we have left
to show is how the verifier can check that the function tables for χ, A, B, etc.
indeed represent low-degree polynomials.

3 Low Degree Test

Our task is thus: given an oracle f : F
n → F, and an integer d, we want to

sample f on only q locations, and then

• If F is an m-variate degree d polynomial ⇒ accept wp 1.

• If F is δ-far from every such polynomial ⇒ reject wp ≥ ε.

19-1

Here, by δ-far, we mean Prx∈Fm [f(x) 6= g(x)] ≥ δ

The number of queries, q, will depend on m, d, |F|, δ,and ε. In the univariate
case, when m = 1, it is easy to see that the test must make more than d queries.
If it makes fewer that that, then there is always a degree d polynomial consistent
with the values it has seen. Thus, it will not have enough information to reject,
even if the rest of the table is inconsistent with such a polynomial.

We will give a test that, for constant ε, δ (say both equal to 0.1), makes
a number of queries q that depends polynomially on d. There is also a small
dependence on m, but not enough to matter for our purposes, so we omit it.

It is easy to come up with such a test for univariate polynomials. We simply
make d + 1 queries, interpolate to get a polynomial, then test to see if that
polynomial is consistent with the rest of the table by querying another point.
More formally, here is our test for m = 1.

• Pick distinct α1, α2, ..., αd+1 ∈ F.

• Query f(α1), f(α2), ..., f(αd+1).

• Let p(x) be a degree d polynomial st p(αi) = f(αi) for all i.

• Pick αd+2 ∈ F randomly.

• Query f(αd+2).

• Check if p(αd+2) = f(αd+2). If so, accept. Otherwise, reject.

To generalize this to m-variate polynomials, we can pick a random line, and
then test that the points on this line are consistent with a univariate degree d

polynomial. More formally, here is the test for arbitrary m:

• Pick β, γ ∈ F
m.

• Let `β,γ : F → F
m be defined by `β,γ(t) = βt + γ.

• Let f |`β,γ
: F → F be defined by f |`β,γ

(t) = f(`β,γ(t)).

• Verify that f |`β,γ
is a univariate polynomial of degree d using the univariate

test given earlier.

Intuitively, this is a very natural extension of the univariate test. However,
proving that it succeeds with sufficiently high probability is not easy, because
it is hard to characterize those functions which are far from multivariate poly-
nomials. Nonetheless, it can be shown that the test works. While we will not
prove it here, we state the following (the full proof can be found in a paper by
Arora, Lund, Motwani, Sudan, and Szegedy):

Lemma 1 If Pr[test rejects f] ≤ ε (for ε ≈ 0.1, and |F| ≥ poly(d
εδm

)), then f

is 2ε-close to some polynomial p.

19-2

4 Reducing the Number of Queries

Now we have shown how to test that polynomials have degree d, by making
poly(d) queries. However, in the PCP construction that we have given so far,
we need to test that some polynomials have degree n. This requires making
poly(n) queries into the proof. But this is silly, since 3-colorability has proofs of
size O(n). With poly(n) queries, we could just look at the whole proof. To fix
this, we change the way the proof is encoded. Instead of encoding the vertices as
elements of a field F, we let F be a smaller field, and encode vertices as vectors
in F

m. Specifically:

• Let |F| ≈ log3 n.

• Let H ⊆ F, |H | = log n.

• Let V ≈ Hm, so m = log |V |
log |H| = log n

log log n
.

• Now E : Hm × Hm → {0, 1}, and we extend to get Ê : F
m × F

m → F.

Accordingly, the prover changes the domain of the functions written down.
So the prover writes:

• χ : F
m → F

• A : F
m → F.

• B : F
m × F

m → F

Note that |Fm| = ((log n)3)
2 log n

log log n = n6, so the size of the proof is still
polynomial. Now the verifier’s task is to:

• verify the degrees of χ, A, B, etc. But notice now that the degree of each
of these polynomials is O(poly log n) instead of n. Since the polynomials
are m-variate instead of univariate, they needn’t be of high degree to have
the correct values on n or n2 points.

• verify that χ is consistent with A, and that χ and E are consistent with
B.

• verify that A|Hm = 0 and B|Hm×Hm = 0. This can be done using the
method outlined in the last lecture. Notice that A(α) = 0 for all α ∈ Hm,
if and only if A can be written as A(x) =

∑m
i=1 Ai(x)g(x) where g(x) =∏

β∈H(x − β) and A1, ..., Am are polynomials.

Thus, we modify the protocol so that the prover sends the additional
polynomials A1, ..., Am : F

m → F and B1, ..., B2m : F
2m → F. The verifier

then tests the degrees of A1, ..., Am and B1, ..., B2m. The verifier also tests
that A is of the correct form by checking A(γ) =

∑m
i=1 Ai(γ)g(γ) for some

random γ. A similar test is done for B.

This completes the description of the PCP construction, showing that NP
⊆ PCP[poly log n, poly log n].

19-3

5 A Different PCP

Now we outline a different PCP construction where the verifier uses a polynomial
amount of randomness but only makes a constant number of queries into the
proof. To start, consider the following problem (it is an exercise to show that
this is NP-hard). Given m degree-2 polynomials P1, ...Pm on n variables over
GF (2), find an assignment to x1, ...xn ∈ GF (2) that makes all the polynomials
simultaneously evaluate to zero.

Suppose a1, ...am is such an assignment. To convince the verifier of this, the
prover writes down

• for every linear function ` : F
n
n → F2, the value `(a). Store all these values

in a table T1. There are 2n linear functions (parity functions) so the table
has length 2n.

• for every quadratic function q : F
n
2 → F2, the value q(a). Store all these

values in a table T2. There are 2n2

quadratic functions so the table has
length 2n2

.

The verifier then

1. verifies ∃a st T1[`] = `(a) for most `

2. verifies ∃a st T2[q] = q(a) for most q.

3. Picks r1, ...rm ∈ {0, 1} at random, then verifies that the polynomial q(a) ,∑
riPi(a) is zero.

Step 1 is accomplished by choosing `1 and `2 at random, and checking that
T1[`1] + T1[`2] = T1[`1 + `2]. This is an application of the well-known linearity
test by Blum, Luby, and Rubinfeld. We will not analyze it here.

Step 2 is accomplished with two separate checks. The verifier first chooses
q1 and q2 randomly, then checks that T2[q1] + T2[q2] = T2[q1 + q2]. Next the
verifier checks that T1[`1] · T1[`2] = T2[q2 + `1 · `] − T2[q2].

Step 3 is accomplished as follows: the verifier picks a random quadratic
function q2 on n variables, and checks that T2[q2 + q] = T2[q2]. As long as T2 is
only corrupted a small amount, this test is likely to pass when a makes all the
Pi’s (and hence q) zero.

The total number of queries performed in all three steps is just 12, which is
constant. Notice however that each query requires producing O(n) or O(n2) bits
simply to index into the tables T1 or T2. This shows that NP ⊆ PCP[poly(n), O(1)].

6 Further Reducing the Number of Queries

One way to reduce the number of queries further is to perform just one of the
checks at random from the checks above. This reduces the number of queries
to 4, at the cost of a higher error rate.

Hastad has given a PCP construction that goes even further and reduces the
number of queries to a mere 3. We will attempt to give a sketch of his approach
here (DISCLAIMER: I do not understand what follows. After this point I am
mindlessly transcribing from my notes).

Conisder the following formulation of satisfiability. Given a function f on n

variables over GF(2), find a such that f(a) = 1.

19-4

Now suppose a1, ..., an is a satisfying assignment. Let T be a table which
holds the value g(a) for every possible function g. Hastad performs a test that
looks something like checking T [g1] + T[g2] = T [g1 + g2 + η] where η is chosen
randomly. Actually, this is insufficient and the test is more like T [g1∧f]+T[g2∧
f] = T [(g1 + g2 + η) ∧ f]. To disallow a table of all zeros from passing the test,
the prover is asked to only write down half of the functions g. The other half
is implicity specified as the complement of the functions written down. Thus if
the prover writes down zeros, the implicit complement functions will yield ones.

19-5

