
6.841 Advanced Complexity Theory April 20, 2005

Lecture 20

Lecturer: Madhu Sudan Scribe: Toby Schachman

1 Today

• We introduce Approximability and Optimization and their relationship
with PCP.

• We begin Dinur’s new proof (published two days ago!) of the PCP theo-
rem. The proof is inspired by previous papers by Dinur-Reingold. Recall
the PCP theorem: NP ⊆ PCP[O(log(n)), O(1)].

2 Approximability and Optimization

Consider the optimization problem of coloring a given graph with as few colors
as possible. We know this problem is NP-hard (because 3-coloring a 3-colorable
graph is NP-hard), but what about nearly-optimal colorings? For example, if
we are given that a graph is k-colorable, is there a way to color the graph with
k + 1 colors in polynomial time? We know we can always color planar graphs
with k + 1 colors (because we have an algorithm for 4-coloring planar graphs)
but it is open what we can do with generalized graphs. Approximability is the
study of finding such near-optimal solutions.

Formally, a polynomial time algorithm A approximates a problem to within
α(·) if for any instance x, A(x) produces a solution whose Cost ≤ α(n)OPT(x)
where OPT(x) is the cost of the optimal solution and α(n) > 1. Alternatively,
if we are trying to maximize a quantity, we use Profit ≥ OPT(x)/α(n).

For example, planar coloring has a 4/3-approximating algorithm. For general
coloring, the best known result for 3-colorable graphs is that we can color a 3-
colorable graph with n3/14 colors [Blum, Karger].

How would one prove that this is the best result, in other words that there
is no polynomial time algorithm that can always color a 3-colorable graph with
less than n(3/4) colors? What would a hardness reduction look like?

Well, we could give a transformation which maps 3cnf formula φ to graph
Gφ such that

• φ ∈ SAT → Gφ is 3-colorable

• φ 6∈ SAT → Gφ is not k-colorable for k < n3/14

If we had such a transformation, then we’d know that either we have the best
algorithm or P=NP. Say we had some better algorithm A′. To see if φ is

20-1

satisfiable we’d just use the transformation to get Gφ and then color Gφ with
A′ and see if we could do it with less than n3/14 colors. If the algorithm worked,
we’d know that φ is satisfiable. We will be using a reduction like this to show
the equivalence of the PCP theorem and the optimization problem MAX-SAT.

3 MAX-SAT

We define MAX k−SAT−Σ to be an optimization problem where k is a positive
integer and Σ is a finite set (an alphabet). An instance of MAX k−SAT−Σ
consists of variables x1, . . . , xn taking values in Σ and constraints C1, . . . , Cm

where Cj is a constraint on up to k variables. The goal is to find an assignment
for x1, . . . , xn that maximizes the number of satisfied constraints. Notice that
constraints can be defined arbitrarily (ie: ”truth-table” style) as long as they
only depend on at most k variables.

MAX-SAT is NP-hard for most choices of k and Σ. For example, MAX
2−SAT−{0, 1, 2} is as hard as the 3-colorable optimization problem defined
above because we can let each vertex be a variable and 0, 1, and 2 be the colors
and then translate the graph into a set of constraints (each edge is a not-equal
constraint on two variables). Another example, MAX 2−SAT−{0, 1} is as hard
as the optimization problem MAX-CUT, in which the goal is to partition a
graph into two groups so as to maximize the number of edges that are ”cut”
(edges that connect two vertices in separate groups). Let each vertex correspond
to a vertex and each edge connecting vi and vj is represented by the constraint
xi ⊕ xj = 1.

Dinur proves that α-approximating MAX k−SAT−Σ is NP-hard for satisfi-
able instances.

4 PCP and MAX-SAT

We will show that the PCP theorem is equivalent to Dinur’s theorem. First we
introduce notation:

Given ψ, an instance of a MAX-SAT problem, and σ, an assignment of the
variables x1, . . . , xn, we say

UNSATσ(ψ) = fraction of constraints left unsatisfied by ψ

and
UNSAT(ψ) = min

σ
{UNSATσ(ψ)}

• Claim 1: If MAX k−SAT−Σ is hard to approximate within α then NP ⊂
PCP[O(logn), O(1)]. That is, if there exists a transform T which trans-
forms a 3cnf-formula to an instance of MAX-SAT such that

φ ∈ SAT → UNSAT(T (φ)) = 0

and
φ 6∈ SAT → UNSAT(φ) ≥ 1 − 1/α

then NP ⊂ PCP[O(log(n)), O(1)]

20-2

• Proof: Verifier transforms NP problem to Max SAT instance by computing
ψ = T (φ) and expects as proof an assignment to the variables. Verifier
then picks a random constraint, Cj in ψ. Notice that if φ 6∈ SAT then
there is a 1 − 1/α chance that Cj will not be met. The verifier reads the
k elements that Cj depends on and verifies that this assignment meets
Cj . Thus it requires k log |Σ| queries and O(log n) random bits. Notice
if φ ∈ SAT we accept with probability 1 and if φ 6∈ SAT then we accept
with probability less than 1/α.

• Claim 2: The converse, if NP ⊂ PCP[O(log n), O(1)] then α-approximating
MAX k−SAT−{0, 1} is hard.

• Proof: Let X1, . . . , Xn denote the bits of the proof. Let there be m =
2O(log n) constraints C1, . . . , Cm. Notice that m is the number of dis-
tinct random strings that could be used by the verifier. Let Cj denote
the condition that leads to acceptance by the verifier on the jth random
string. Notice that Cj depends on only q variables, where q is the num-
ber of queries that the verifier needs. Thus we have an instance of MAX
q−SAT−{0, 1}.

5 Dinur’s Theorem

Theorem [Dinur 2005]: For all ε > 0 there exists a transformation T’ transform-
ing 3cnf formulae to MAX 2−SAT−Σ such that

φ ∈ SAT → UNSAT(φ) = 0

and
φ 6∈ SAT → UNSAT(T ′(φ)) ≥ ε

Notice by the above claims this is equivalent to the PCP theorem. We prove
the theorem with a main lemma which is then proved by two sub-lemmas.

6 Main Lemma

For some constant Σ, ε > 0, there exists a transform T transforming MAX
2−SAT−Σ instances to MAX 2−SAT−Σ preserving satisfiability such that

UNSAT(T (φ)) ≥ min{ε, 2UNSAT(φ)}

and further |T (φ)| is O(|φ|).
The theorem follows from this lemma. Start by transforming φ to T0(φ),

and instance of MAX 2−SAT−Σ such that T0(φ) is satisfiable if and only if
φ is satisfiable. Now apply T to T0(φ) a logarithmic number of times so that
UNSAT is sufficiently low and |T ′(φ)| is O(n log(n)).

We prove this main lemma from two sub-lemmas.

7 Lemma 1: Amplification

For every β and Σ there exists a l and a transform T1 from MAX 2−SAT−Σ to
MAX 2−SAT−Σl preserving satisfiability such that

UNSAT(T1(φ)) ≥ β · UNSAT(φ)

20-3

and further |T1(φ)| = O(|φ|).
Notice that this lemma improves soundness but at the expense of a larger

alphabet. We will defer the proof of this lemma until we cover derandomization
techniques.

8 Lemma 2: Alphabet Reduction

There exists alphabet Σ and constant c such that for every finite alphabet Γ
there is a transform T2 from MAX 2−SAT−Γ to MAX 2−SAT−Σ preserving
satisfiability and such that

UNSAT(T2(φ)) ≥ 1/c · UNSAT(φ)

Furthermore |T2(φ)| = O(|φ|). Notice that this lemma decreases soundness but
also decreases the alphabet size. We can combine it with lemma 1 to prove the
main lemma.

9 Main Lemma from Sub-Lemmas

• Set Σ as in Lemma 2.

• Set β = 2c

• Set Γ to Σl from Lemma 1.

• Consider the transform T = T2 ◦ T1. T is linear sized, polynomial time,
and preserves satisfiability. Furthermore,

UNSAT(T (φ)) = UNSAT(T2(T1(φ)))

≥ 1/c · UNSAT(T1(φ))

≥ β/c · UNSAT(φ)

= 2 · UNSAT(φ)

10 Proof Outline for Lemma 2

We ended with a proof outline of lemma 2, which we will prove next class. We
break lemma 2 down into two more lemmas:

• Lemma 2a: There exists constants k and ca such that for every finite Γ,
there is a transform T2a from MAX 2−SAT−Γ to MAX k−SAT−{0, 1}
preserving satisfiability such that

UNSAT(T2a(φ)) ≥ 1/ca · UNSAT(φ)

and further, T2a is linear.

• Lemma 2b: For every k there is a transform T2b MAX k−SAT−{0, 1} to
MAX 2−SAT−{0, 1}k such that

UNSAT(T2b(φ)) ≥ 1/k · UNSAT(φ)

and further, T2b is linear and preserves satisfiability. The proof of this
lemma is analogous to reducing oracle interactive proofs to 2-prover inter-
active proofs.

20-4

