Lecture 20

1 Today

- We introduce Approximability and Optimization and their relationship with PCP.
- We begin Dinur's new proof (published two days ago!) of the PCP theorem. The proof is inspired by previous papers by Dinur-Reingold. Recall the PCP theorem: NP \subseteq PCP[O(log(n)), O(1)].

2 Approximability and Optimization

Consider the optimization problem of coloring a given graph with as few colors as possible. We know this problem is NP-hard (because 3-coloring a 3-colorable graph is NP-hard), but what about nearly-optimal colorings? For example, if we are given that a graph is k-colorable, is there a way to color the graph with k + 1 colors in polynomial time? We know we can always color planar graphs with k + 1 colors (because we have an algorithm for 4-coloring planar graphs) but it is open what we can do with generalized graphs. Approximability is the study of finding such near-optimal solutions.

Formally, a polynomial time algorithm A approximates a problem to within $\alpha(\cdot)$ if for any instance x, A(x) produces a solution whose $\text{Cost} \leq \alpha(n)\text{OPT}(x)$ where OPT(x) is the cost of the optimal solution and $\alpha(n) > 1$. Alternatively, if we are trying to maximize a quantity, we use $\text{Profit} \geq \text{OPT}(x)/\alpha(n)$.

For example, planar coloring has a 4/3-approximating algorithm. For general coloring, the best known result for 3-colorable graphs is that we can color a 3-colorable graph with $n^{3/14}$ colors [Blum, Karger].

How would one prove that this is the best result, in other words that there is no polynomial time algorithm that can always color a 3-colorable graph with less than $n^{(3/4)}$ colors? What would a hardness reduction look like?

Well, we could give a transformation which maps 3cnf formula ϕ to graph G_{ϕ} such that

- $\phi \in \text{SAT} \to G_{\phi}$ is 3-colorable
- $\phi \notin \text{SAT} \to G_{\phi}$ is not k-colorable for $k < n^{3/14}$

If we had such a transformation, then we'd know that either we have the best algorithm or P=NP. Say we had some better algorithm A'. To see if ϕ is

20 - 1

satisfiable we'd just use the transformation to get G_{ϕ} and then color G_{ϕ} with A' and see if we could do it with less than $n^{3/14}$ colors. If the algorithm worked, we'd know that ϕ is satisfiable. We will be using a reduction like this to show the equivalence of the PCP theorem and the optimization problem MAX-SAT.

3 MAX-SAT

We define MAX k-SAT- Σ to be an optimization problem where k is a positive integer and Σ is a finite set (an alphabet). An instance of MAX k-SAT- Σ consists of variables x_1, \ldots, x_n taking values in Σ and constraints C_1, \ldots, C_m where C_j is a constraint on up to k variables. The goal is to find an assignment for x_1, \ldots, x_n that maximizes the number of satisfied constraints. Notice that constraints can be defined arbitrarily (ie: "truth-table" style) as long as they only depend on at most k variables.

MAX-SAT is NP-hard for most choices of k and Σ . For example, MAX 2–SAT– $\{0, 1, 2\}$ is as hard as the 3-colorable optimization problem defined above because we can let each vertex be a variable and 0, 1, and 2 be the colors and then translate the graph into a set of constraints (each edge is a not-equal constraint on two variables). Another example, MAX 2–SAT– $\{0, 1\}$ is as hard as the optimization problem MAX-CUT, in which the goal is to partition a graph into two groups so as to maximize the number of edges that are "cut" (edges that connect two vertices in separate groups). Let each vertex correspond to a vertex and each edge connecting v_i and v_j is represented by the constraint $x_i \oplus x_j = 1$.

Dinur proves that α -approximating MAX k-SAT- Σ is NP-hard for satisfiable instances.

4 PCP and MAX-SAT

We will show that the PCP theorem is equivalent to Dinur's theorem. First we introduce notation:

Given ψ , an instance of a MAX-SAT problem, and σ , an assignment of the variables x_1, \ldots, x_n , we say

UNSAT_{σ}(ψ) = fraction of constraints left unsatisfied by ψ

and

$$\text{UNSAT}(\psi) = \min_{\sigma} \{\text{UNSAT}_{\sigma}(\psi)\}$$

• Claim 1: If MAX k-SAT- Σ is hard to approximate within α then NP \subset PCP[O(logn), O(1)]. That is, if there exists a transform T which transforms a 3cnf-formula to an instance of MAX-SAT such that

$$\phi \in \text{SAT} \to \text{UNSAT}(T(\phi)) = 0$$

and

$$\phi \notin \text{SAT} \to \text{UNSAT}(\phi) \ge 1 - 1/\alpha$$

then NP \subset PCP[O(log(n)), O(1)]

- Proof: Verifier transforms NP problem to Max SAT instance by computing $\psi = T(\phi)$ and expects as proof an assignment to the variables. Verifier then picks a random constraint, C_j in ψ . Notice that if $\phi \notin$ SAT then there is a $1 1/\alpha$ chance that C_j will not be met. The verifier reads the k elements that C_j depends on and verifies that this assignment meets C_j . Thus it requires $k \log |\Sigma|$ queries and $O(\log n)$ random bits. Notice if $\phi \in$ SAT we accept with probability 1 and if $\phi \notin$ SAT then we accept with probability less than $1/\alpha$.
- Claim 2: The converse, if NP \subset PCP[$O(\log n), O(1)$] then α -approximating MAX k-SAT-{0,1} is hard.
- Proof: Let X_1, \ldots, X_n denote the bits of the proof. Let there be $m = 2^{O(\log n)}$ constraints C_1, \ldots, C_m . Notice that m is the number of distinct random strings that could be used by the verifier. Let C_j denote the condition that leads to acceptance by the verifier on the $j^t h$ random string. Notice that C_j depends on only q variables, where q is the number of queries that the verifier needs. Thus we have an instance of MAX $q-\text{SAT}-\{0,1\}$.

5 Dinur's Theorem

Theorem [Dinur 2005]: For all $\epsilon > 0$ there exists a transformation T' transforming 3cnf formulae to MAX 2–SAT– Σ such that

$$\phi \in \text{SAT} \to \text{UNSAT}(\phi) = 0$$

and

$$\phi \notin \text{SAT} \to \text{UNSAT}(T'(\phi)) \ge \epsilon$$

Notice by the above claims this is equivalent to the PCP theorem. We prove the theorem with a main lemma which is then proved by two sub-lemmas.

6 Main Lemma

For some constant Σ , $\epsilon > 0$, there exists a transform T transforming MAX 2–SAT– Σ instances to MAX 2–SAT– Σ preserving satisfiability such that

 $\text{UNSAT}(T(\phi)) \ge \min\{\epsilon, 2\text{UNSAT}(\phi)\}$

and further $|T(\phi)|$ is $O(|\phi|)$.

The theorem follows from this lemma. Start by transforming ϕ to $T_0(\phi)$, and instance of MAX 2-SAT- Σ such that $T_0(\phi)$ is satisfiable if and only if ϕ is satisfiable. Now apply T to $T_0(\phi)$ a logarithmic number of times so that UNSAT is sufficiently low and $|T'(\phi)|$ is $O(n \log(n))$.

We prove this main lemma from two sub-lemmas.

7 Lemma 1: Amplification

For every β and Σ there exists a l and a transform T_1 from MAX 2-SAT- Σ to MAX 2-SAT- Σ^l preserving satisfiability such that

$$\text{UNSAT}(T_1(\phi)) \ge \beta \cdot \text{UNSAT}(\phi)$$

and further $|T_1(\phi)| = O(|\phi|)$.

Notice that this lemma improves soundness but at the expense of a larger alphabet. We will defer the proof of this lemma until we cover derandomization techniques.

8 Lemma 2: Alphabet Reduction

There exists alphabet Σ and constant c such that for every finite alphabet Γ there is a transform T_2 from MAX 2–SAT– Γ to MAX 2–SAT– Σ preserving satisfiability and such that

$$\text{UNSAT}(T_2(\phi)) \ge 1/c \cdot \text{UNSAT}(\phi)$$

Furthermore $|T_2(\phi)| = O(|\phi|)$. Notice that this lemma decreases soundness but also decreases the alphabet size. We can combine it with lemma 1 to prove the main lemma.

9 Main Lemma from Sub-Lemmas

- Set Σ as in Lemma 2.
- Set $\beta = 2c$
- Set Γ to Σ^l from Lemma 1.
- Consider the transform $T = T_2 \circ T_1$. T is linear sized, polynomial time, and preserves satisfiability. Furthermore,

$$\begin{aligned} \text{UNSAT}(T(\phi)) &= \text{UNSAT}(T_2(T_1(\phi))) \\ &\geq 1/c \cdot \text{UNSAT}(T_1(\phi)) \\ &\geq \beta/c \cdot \text{UNSAT}(\phi) \\ &= 2 \cdot \text{UNSAT}(\phi) \end{aligned}$$

10 Proof Outline for Lemma 2

We ended with a proof outline of lemma 2, which we will prove next class. We break lemma 2 down into two more lemmas:

• Lemma 2a: There exists constants k and c_a such that for every finite Γ , there is a transform T_{2a} from MAX 2-SAT- Γ to MAX k-SAT- $\{0, 1\}$ preserving satisfiability such that

$$\text{UNSAT}(T_{2a}(\phi)) \ge 1/c_a \cdot \text{UNSAT}(\phi)$$

and further, T_{2a} is linear.

• Lemma 2b: For every k there is a transform T_{2b} MAX k-SAT-{0,1} to MAX 2-SAT-{0,1}^k such that

$$\text{UNSAT}(T_{2b}(\phi)) \ge 1/k \cdot \text{UNSAT}(\phi)$$

and further, T_{2b} is linear and preserves satisfiability. The proof of this lemma is analogous to reducing oracle interactive proofs to 2-prover interactive proofs.