6.841 Advanced Complexity Theory

Lecture 20

April 20, 2005

Lecturer: Madhu Sudan Scribe: Toby Schachman

1 Today

e We introduce Approximability and Optimization and their relationship
with PCP.

e We begin Dinur’s new proof (published two days ago!) of the PCP theo-
rem. The proof is inspired by previous papers by Dinur-Reingold. Recall
the PCP theorem: NP C PCP[O(log(n)), O(1)].

2 Approximability and Optimization

Consider the optimization problem of coloring a given graph with as few colors
as possible. We know this problem is NP-hard (because 3-coloring a 3-colorable
graph is NP-hard), but what about nearly-optimal colorings? For example, if
we are given that a graph is k-colorable, is there a way to color the graph with
k + 1 colors in polynomial time? We know we can always color planar graphs
with k + 1 colors (because we have an algorithm for 4-coloring planar graphs)
but it is open what we can do with generalized graphs. Approximability is the
study of finding such near-optimal solutions.

Formally, a polynomial time algorithm A approximates a problem to within
a(-) if for any instance x, A(x) produces a solution whose Cost < a(n)OPT(z)
where OPT(z) is the cost of the optimal solution and «(n) > 1. Alternatively,
if we are trying to maximize a quantity, we use Profit > OPT(x)/a(n).

For example, planar coloring has a 4/3-approximating algorithm. For general
coloring, the best known result for 3-colorable graphs is that we can color a 3-
colorable graph with n3/1* colors [Blum, Karger].

How would one prove that this is the best result, in other words that there
is no polynomial time algorithm that can always color a 3-colorable graph with
less than n(3/4) colors? What would a hardness reduction look like?

Well, we could give a transformation which maps 3cnf formula ¢ to graph
G such that

e ¢ € SAT — Gy is 3-colorable
e ¢ ¢ SAT — Gy is not k-colorable for k < n3/14

If we had such a transformation, then we’d know that either we have the best
algorithm or P=NP. Say we had some better algorithm A’. To see if ¢ is

20-1

satisfiable we’d just use the transformation to get G¢ and then color G with
A’ and see if we could do it with less than n3/'4 colors. If the algorithm worked,
we’d know that ¢ is satisfiable. We will be using a reduction like this to show
the equivalence of the PCP theorem and the optimization problem MAX-SAT.

3 MAX-SAT

We define MAX k—SAT—X to be an optimization problem where k is a positive
integer and X is a finite set (an alphabet). An instance of MAX k—SAT-X
consists of variables z1,...,z, taking values in ¥ and constraints Cy,...,Cn,
where C} is a constraint on up to &k variables. The goal is to find an assignment
for x1,...,x, that maximizes the number of satisfied constraints. Notice that
constraints can be defined arbitrarily (ie: ”truth-table” style) as long as they
only depend on at most k variables.

MAX-SAT is NP-hard for most choices of k and ¥. For example, MAX
2—SAT—{0,1,2} is as hard as the 3-colorable optimization problem defined
above because we can let each vertex be a variable and 0, 1, and 2 be the colors
and then translate the graph into a set of constraints (each edge is a not-equal
constraint on two variables). Another example, MAX 2—SAT—{0, 1} is as hard
as the optimization problem MAX-CUT, in which the goal is to partition a
graph into two groups so as to maximize the number of edges that are ”cut”
(edges that connect two vertices in separate groups). Let each vertex correspond
to a vertex and each edge connecting v; and v; is represented by the constraint
T, Dx; = 1.

Dinur proves that a-approximating MAX k—SAT—X is NP-hard for satisfi-
able instances.

4 PCP and MAX-SAT

We will show that the PCP theorem is equivalent to Dinur’s theorem. First we
introduce notation:

Given 1, an instance of a MAX-SAT problem, and o, an assignment of the
variables x1, ..., Ty, we say

UNSAT, (¢)) = fraction of constraints left unsatisfied by v

and

UNSAT () = min{UNSAT, (v)}

e Claim 1: If MAX k—SAT—-X is hard to approximate within o then NP C
PCP[O(logn),O(1)]. That is, if there exists a transform T which trans-
forms a 3cnf-formula to an instance of MAX-SAT such that

¢ € SAT — UNSAT(T(¢)) = 0

and
¢ € SAT — UNSAT(¢) >1— 1/«

then NP € PCP[O(log(n)), O(1)]

20-2

e Proof: Verifier transforms NP problem to Max SAT instance by computing
1 = T(¢) and expects as proof an assignment to the variables. Verifier
then picks a random constraint, C; in 1. Notice that if ¢ ¢ SAT then
there is a 1 — 1/« chance that C; will not be met. The verifier reads the
k elements that C; depends on and verifies that this assignment meets
C;. Thus it requires klog|X| queries and O(logn) random bits. Notice
if ¢ € SAT we accept with probability 1 and if ¢ ¢ SAT then we accept
with probability less than 1/a.

e Claim 2: The converse, if NP € PCP[O(logn), O(1)] then a-approximating
MAX k—SAT—{0,1} is hard.

e Proof: Let Xy,...,X, denote the bits of the proof. Let there be m =
20(ogn) congtraints C4,...,C,,. Notice that m is the number of dis-
tinct random strings that could be used by the verifier. Let C; denote
the condition that leads to acceptance by the verifier on the j'h random
string. Notice that C; depends on only ¢ variables, where ¢ is the num-
ber of queries that the verifier needs. Thus we have an instance of MAX
q—SAT—{0,1}.

5 Dinur’s Theorem

Theorem [Dinur 2005]: For all € > 0 there exists a transformation T’ transform-
ing 3cnf formulae to MAX 2—SAT—X such that

¢ € SAT — UNSAT(¢) = 0

and

¢ & SAT — UNSAT(T"(¢)) > ¢

Notice by the above claims this is equivalent to the PCP theorem. We prove
the theorem with a main lemma which is then proved by two sub-lemmas.

6 Main Lemma

For some constant X, € > 0, there exists a transform T transforming MAX
2—SAT-Y. instances to MAX 2—SAT—X. preserving satisfiability such that

UNSAT(T'(¢)) > min{e, 2UNSAT(¢)}

and further |T'(¢)] is O(|@]).

The theorem follows from this lemma. Start by transforming ¢ to Tp(¢),
and instance of MAX 2—SAT—X such that To(¢) is satisfiable if and only if
¢ is satisfiable. Now apply T to Tp(¢) a logarithmic number of times so that
UNSAT is sufficiently low and |T7(¢)| is O(nlog(n)).

We prove this main lemma from two sub-lemmas.

7 Lemma 1: Amplification

For every 3 and ¥ there exists a [and a transform 73 from MAX 2—SAT-X to
MAX 2—SAT—X! preserving satisfiability such that

UNSAT(T1(¢)) > 3 - UNSAT(¢)

20-3

and further |T7(¢)| = O(|9)).

Notice that this lemma improves soundness but at the expense of a larger
alphabet. We will defer the proof of this lemma until we cover derandomization
techniques.

8 Lemma 2: Alphabet Reduction

There exists alphabet ¥ and constant ¢ such that for every finite alphabet T’
there is a transform Ty from MAX 2—SAT-T' to MAX 2—SAT—X. preserving
satisfiability and such that

UNSAT(T%(¢)) > 1/c- UNSAT(¢)

Furthermore |T5(¢)| = O(|¢|). Notice that this lemma decreases soundness but
also decreases the alphabet size. We can combine it with lemma 1 to prove the
main lemma.

9 Main Lemma from Sub-Lemmas
e Set X as in Lemma 2.

Set 8 =2c

Set I' to ¥ from Lemma 1.

Consider the transform T' = T o Ty. T is linear sized, polynomial time,
and preserves satisfiability. Furthermore,
UNSAT(T(¢)) = UNSAT(TL(Ti(¢)))
1/¢- UNSAT(T1(¢))
B/c- UNSAT(9)
2 - UNSAT(¢)

ARV

10 Proof Outline for Lemma 2

We ended with a proof outline of lemma 2, which we will prove next class. We
break lemma 2 down into two more lemmas:

e Lemma 2a: There exists constants k£ and ¢, such that for every finite I,
there is a transform T, from MAX 2—SAT-T' to MAX k—SAT—{0,1}
preserving satisfiability such that

UNSAT(T5u(6)) > 1/ca - UNSAT()
and further, Ts, is linear.

e Lemma 2b: For every k there is a transform T5, MAX k—SAT—{0,1} to
MAX 2—SAT—{0,1}* such that

UNSAT (To(¢)) > 1/k - UNSAT(¢)

and further, T is linear and preserves satisfiability. The proof of this
lemma is analogous to reducing oracle interactive proofs to 2-prover inter-
active proofs.

20-4

