1 Today

- We introduce Approximability and Optimization and their relationship with PCP.

- We begin Dinur’s new proof (published two days ago!) of the PCP theorem. The proof is inspired by previous papers by Dinur-Reingold. Recall the PCP theorem: \(\operatorname{NP} \subseteq \operatorname{PCP}[O(\log(n)), O(1)] \).

2 Approximability and Optimization

Consider the optimization problem of coloring a given graph with as few colors as possible. We know this problem is NP-hard (because 3-coloring a 3-colorable graph is NP-hard), but what about nearly-optimal colorings? For example, if we are given that a graph is \(k \)-colorable, is there a way to color the graph with \(k + 1 \) colors in polynomial time? We know we can always color planar graphs with \(k + 1 \) colors (because we have an algorithm for 4-coloring planar graphs) but it is open what we can do with generalized graphs. Approximability is the study of finding such near-optimal solutions.

Formally, a polynomial time algorithm \(A \) approximates a problem to within \(\alpha(\cdot) \) if for any instance \(x \), \(A(x) \) produces a solution whose Cost \(\leq \alpha(n) \text{OPT}(x) \) where \(\text{OPT}(x) \) is the cost of the optimal solution and \(\alpha(n) > 1 \). Alternatively, if we are trying to maximize a quantity, we use Profit \(\geq \text{OPT}(x)/\alpha(n) \).

For example, planar coloring has a 4/3-approximating algorithm. For general coloring, the best known result for 3-colorable graphs is that we can color a 3-colorable graph with \(n^{3/14} \) colors [Blum, Karger].

How would one prove that this is the best result, in other words that there is no polynomial time algorithm that can always color a 3-colorable graph with less than \(n^{3/4} \) colors? What would a hardness reduction look like?

Well, we could give a transformation which maps 3cnf formula \(\phi \) to graph \(G_\phi \) such that

- \(\phi \in \text{SAT} \rightarrow G_\phi \) is 3-colorable
- \(\phi \notin \text{SAT} \rightarrow G_\phi \) is not \(k \)-colorable for \(k < n^{3/14} \)

If we had such a transformation, then we’d know that either we have the best algorithm or \(\text{P} = \text{NP} \). Say we had some better algorithm \(A' \). To see if \(\phi \) is
satisfiable we’d just use the transformation to get G_ϕ and then color G_ϕ with A' and see if we could do it with less than $n^{3/14}$ colors. If the algorithm worked, we’d know that ϕ is satisfiable. We will be using a reduction like this to show the equivalence of the PCP theorem and the optimization problem MAX-SAT.

3 MAX-SAT

We define MAX k-SAT-Σ to be an optimization problem where k is a positive integer and Σ is a finite set (an alphabet). An instance of MAX k-SAT-Σ consists of variables x_1, \ldots, x_n taking values in Σ and constraints C_1, \ldots, C_m where C_j is a constraint on up to k variables. The goal is to find an assignment for x_1, \ldots, x_n that maximizes the number of satisfied constraints. Notice that constraints can be defined arbitrarily (i.e., “truth-table” style) as long as they only depend on at most k variables.

MAX-SAT is NP-hard for most choices of k and Σ. For example, MAX 2-SAT-$\{0, 1, 2\}$ is as hard as the 3-colorable optimization problem defined above because we can let each vertex be a variable and 0, 1, and 2 be the colors and then translate the graph into a set of constraints (each edge is a not-equal constraint on two variables). Another example, MAX 2-SAT-$\{0, 1\}$ is as hard as the optimization problem MAX-CUT, in which the goal is to partition a graph into two groups so as to maximize the number of edges that are “cut” (edges that connect two vertices in separate groups). Let each vertex correspond to a vertex and each edge connecting v_i and v_j is represented by the constraint $x_i \oplus x_j = 1$.

Dinur proves that α-approximating MAX k-SAT-Σ is NP-hard for satisfiable instances.

4 PCP and MAX-SAT

We will show that the PCP theorem is equivalent to Dinur’s theorem. First we introduce notation:

Given ψ, an instance of a MAX-SAT problem, and σ, an assignment of the variables x_1, \ldots, x_n, we say

$$\text{UNSAT}_\sigma(\psi) = \text{fraction of constraints left unsatisfied by } \psi$$

and

$$\text{UNSAT}(\psi) = \min_\sigma \{\text{UNSAT}_\sigma(\psi)\}$$

- Claim 1: If MAX k-SAT-Σ is hard to approximate within α then NP \subseteq PCP[O(log n), O(1)]. That is, if there exists a transform T which transforms a 3cnf-formula to an instance of MAX-SAT such that

$$\phi \in \text{SAT} \rightarrow \text{UNSAT}(T(\phi)) = 0$$

and

$$\phi \notin \text{SAT} \rightarrow \text{UNSAT}(\phi) \geq 1 - 1/\alpha$$

then NP \subseteq PCP[O(log(n)), O(1)]
• Proof: Verifier transforms NP problem to Max SAT instance by computing
\[\psi = T(\phi) \] and expects as proof an assignment to the variables. Verifier
then picks a random constraint, \(C_j \) in \(\psi \). Notice that if \(\phi \not\in \text{SAT} \) then
there is a \(1 - 1/\alpha \) chance that \(C_j \) will not be met. The verifier reads the
\(k \) elements that \(C_j \) depends on and verifies that this assignment meets
\(C_j \). Thus it requires \(k \log |\Sigma| \) queries and \(O(\log n) \) random bits. Notice
if \(\phi \in \text{SAT} \) we accept with probability 1 and if \(\phi \not\in \text{SAT} \) then we accept
with probability less than \(1/\alpha \).

• Claim 2: The converse, if \(\text{NP} \subset \text{PCP}[O(\log n), O(1)] \) then \(\alpha \)-approximating
\(\text{MAX } k-\text{SAT} - \{0,1\} \) is hard.

• Proof: Let \(X_1, \ldots, X_n \) denote the bits of the proof. Let there be \(m = 2^{O(\log n)} \)
constraints \(C_1, \ldots, C_m \). Notice that \(m \) is the number of distinct random
strings that could be used by the verifier. Let \(C_j \) denote the condition that leads to acceptance by the verifier on the \(j^{th} \) random
string. Notice that \(C_j \) depends on only \(q \) variables, where \(q \) is the number
of queries that the verifier needs. Thus we have an instance of Max
\(q-\text{SAT} - \{0,1\} \).

5 Dinur’s Theorem

Theorem [Dinur 2005]: For all \(\epsilon > 0 \) there exists a transformation \(T' \) transforming 3cnf formulae to \(\text{MAX } 2-\text{SAT} - \Sigma \) such that
\[\phi \in \text{SAT} \rightarrow \text{UNSAT}(\phi) = 0 \]
and
\[\phi \not\in \text{SAT} \rightarrow \text{UNSAT}(T'(\phi)) \geq \epsilon \]
Notice by the above claims this is equivalent to the PCP theorem. We prove
the theorem with a main lemma which is then proved by two sub-lemmas.

6 Main Lemma

For some constant \(\Sigma, \epsilon > 0 \), there exists a transform \(T \) transforming \(\text{MAX } 2-\text{SAT} - \Sigma \) instances to \(\text{MAX } 2-\text{SAT} - \Sigma \) preserving satisfiability such that
\[\text{UNSAT}(T(\phi)) \geq \min\{\epsilon, 2\text{UNSAT}(\phi)\} \]
and further \(|T(\phi)| \) is \(O(|\phi|) \).

The theorem follows from this lemma. Start by transforming \(\phi \) to \(T_0(\phi) \),
and instance of \(\text{MAX } 2-\text{SAT} - \Sigma \) such that \(T_0(\phi) \) is satisfiable if and only if
\(\phi \) is satisfiable. Now apply \(T \) to \(T_0(\phi) \) a logarithmic number of times so that
\(\text{UNSAT} \) is sufficiently low and \(|T'(\phi)| \) is \(O(n \log(n)) \).

We prove this main lemma from two sub-lemmas.

7 Lemma 1: Amplification

For every \(\beta \) and \(\Sigma \) there exists a \(l \) and a transform \(T_1 \) from \(\text{MAX } 2-\text{SAT} - \Sigma \) to
\(\text{MAX } 2-\text{SAT} - \Sigma^l \) preserving satisfiability such that
\[\text{UNSAT}(T_1(\phi)) \geq \beta \cdot \text{UNSAT}(\phi) \]
and further \(|T_1(\phi)| = O(|\phi|)\).

Notice that this lemma improves soundness but at the expense of a larger alphabet. We will defer the proof of this lemma until we cover derandomization techniques.

8 Lemma 2: Alphabet Reduction

There exists alphabet \(\Sigma\) and constant \(c\) such that for every finite alphabet \(\Gamma\) there is a transform \(T_2\) from \(\text{MAX } 2-\text{SAT } \Gamma\) to \(\text{MAX } 2-\text{SAT } \Sigma\) preserving satisfiability and such that

\[
\text{UNSAT}(T_2(\phi)) \geq 1/c \cdot \text{UNSAT}(\phi)
\]

Furthermore \(|T_2(\phi)| = O(|\phi|)\). Notice that this lemma decreases soundness but also decreases the alphabet size. We can combine it with lemma 1 to prove the main lemma.

9 Main Lemma from Sub-Lemmas

- Set \(\Sigma\) as in Lemma 2.
- Set \(\beta = 2c\)
- Set \(\Gamma\) to \(\Sigma'\) from Lemma 1.
- Consider the transform \(T = T_2 \circ T_1\). \(T\) is linear sized, polynomial time, and preserves satisfiability. Furthermore,

\[
\text{UNSAT}(T(\phi)) = \text{UNSAT}(T_2(T_1(\phi))) \\
\geq 1/c \cdot \text{UNSAT}(T_1(\phi)) \\
\geq \beta/c \cdot \text{UNSAT}(\phi) \\
= 2 \cdot \text{UNSAT}(\phi)
\]

10 Proof Outline for Lemma 2

We ended with a proof outline of lemma 2, which we will prove next class. We break lemma 2 down into two more lemmas:

- Lemma 2a: There exists constants \(k\) and \(c_a\) such that for every finite \(\Gamma\), there is a transform \(T_{2a}\) from \(\text{MAX } 2-\text{SAT } \Gamma\) to \(\text{MAX } k-\text{SAT } \{0,1\}\) preserving satisfiability such that

\[
\text{UNSAT}(T_{2a}(\phi)) \geq 1/c_a \cdot \text{UNSAT}(\phi)
\]
and further, \(T_{2a}\) is linear.

- Lemma 2b: For every \(k\) there is a transform \(T_{2b}\) \(\text{MAX } k-\text{SAT } \{0,1\}\) to \(\text{MAX } 2-\text{SAT } \{0,1\}^k\) such that

\[
\text{UNSAT}(T_{2b}(\phi)) \geq 1/k \cdot \text{UNSAT}(\phi)
\]
and further, \(T_{2b}\) is linear and preserves satisfiability. The proof of this lemma is analogous to reducing oracle interactive proofs to 2-prover interactive proofs.