6.841 Advanced Complexity Theory

Lecture 21

April 25, 2005

Lecturer: Madhu Sudan Scribe: Paul Valiant

1 Outline

Today we finish the overview of Dinur’s combinatorial proof of the PCP theorem.
Recall the problem max-k-SAT-3, an instance of which takes the following
form.

e We have n variables z1, ..., x,, taking values in 3.

e We have m constraints C1, ..., Cy,, each constraint C; acting on at most k
variables via an arbitrary predicate P : ©% — {0, 1}.

The task is to find an assignment to the variables that maximizes the number
of satisfied constraints.

Recall from last lecture, that the PCP theorem is equivalent to the statement
that one can transform SAT problems ¢ into max-k-SAT-Y problems ¢’ that
are robust in the following sense:

There exists a constant € such that

o If ¢ is satisfiable, ¢’ is (perfectly) satisfiable.

e If ¢ is not satisfiable, then at least € fraction of the clauses of ¢’
must be unsatisfied for any assignment to the variables of ¢'.

For a problem ¢, denote by UNSAT(¢) the minimum nonzero fraction of
clauses of ¢ that may be unsatisfied. The idea is that if we can transform any
3SAT problem into a problem ¢’ with UNSAT(¢') > €, then we can probabilisti-
cally test a claimed assignment to ¢’ by testing a random clause; this test would
have soundness 1 — €. Thus since 3SAT is NP-complete, we can construct such
PCPs for any problem in NP.

We note that for a SAT problem ¢ with m clauses, the unsatisfiability gap
UNSAT(¢) is at least % The main idea of Dinur’s proof is a technique to
amplify this fraction to a fixed constant e. This takes the form of the following
lemma.

Lemma 1 (main) There exists a transformation T mapping maz-2-SAT-X
into itself with the following properties:

e T increases the number of variables and clauses by an at most linear factor.

o UNSAT(T(¢)) > min{e, 2UNSAT(¢)}.

21-1

Iteratively applying this lemma logm times will increase UNSAT(¢) to a
constant €, while increasing the size of ¢ by at most polynomial factor.

The proof of this lemma is divided into two sub-lemmas. See the previous
lecture notes for details.

Lemma 2 (Lemma 1) There is a reduction Ty from maz-2-SAT-X to mazx-2-
SAT-S! for some I such that the unsatisfiability gap becomes “much” larger.

Lemma 3 (Lemma 2) There is a reduction T> from maz-2-SAT-T into maz-
2-SAT-Y, that possibly reduces the unsatisfiability gap, but by a fixed constant
that is independent of T'.

In turn, Lemma 3 follows from the following two smaller lemmas.

Lemma 4 (Lemma 2a) There is a reduction Taq from maz-2-sat-I' to maz-
k-SAT-{0,1}, for some k.

Lemma 5 (Lemma 2b) There is a reduction Tay from max-k-SAT-{0,1} to
maz-2-SAT-X.

Lemma 5 was shown last time. Here we outline the proofs of Lemmas 2 and
4.

2 Gadgets

The proofs of these lemmas are going to take the form of “gadgets”. The general
form of such a gadget (for our purposes) is the following.

We are given a constraint satisfaction problem ¢ with variables {z;} and
clauses {C;}, and wish to transform the problem so as to meet some specified
criteria.

We do this via an encoding function F, that transforms ¢ to ¢’ as follows:

e For each variable z;, E maps z; into a set of variables z/ ,,...,z},, for
. ;
some t.

e For each constraint C;, E introduces auxiliary variables y; 1, ...,y for
some .

e Then for E' maps each constraint C; into a set of new constraint C y, ..., C; ,
on some subset of the new variables {z’, y}.

The encoding function E must preserve satisfiability: if ¢ is satisfiable, then so
is ¢'. Furthermore, to relate the satisfaction of clauses of ¢’ back to those of the
original problem, we introduce a decoding function D, that will decode variable
assignments of ¢’ to variable assignments of ¢ in such a way that if a large
fraction of the clauses C;-,l, e le‘,v are satisfied, then the C; will be satisfied on
the decoded assignment D(x} ,,...).

Such gadgets are fundamental to the following proofs.

21-2

3 Proof of Lemma 2a

Recall that we are trying to reduce max-2-SAT-I" to max-k-SAT-{0,1}. When
constructing an encoding F, as described above, we clearly need to represent a
variable z; in T by at least log|T"| binary variables x;k We however choose to
use many more than log |T'| variables.

Recall that in the reduction we are constructing, we aim to preserve (up to
linear factors) the unsatisfiability gap. In other words, if a high percentage of the
new constraints C’ are satisfied, then we want a guarantee that a comparably
high percentage of the original constraints C; are satisfied.

We are motivated by the PCP construction to express the probabilistically
checkable constraints in terms of tables of function evaluations. The gadget is
constructed as follows.

For each variable x;, construct variables z; s for every function f : I' —
{0,1}. We will later construct constraints that will let an assignment {z; ,} be
interpreted as the result of f being applied to the original variable x;.

Recall that each constraint C; consists of a predicate P(z;, ,x;,) operating
on two of the (original) variables. For each such constraint C;, we construct
auxiliary variables y;, for every function g : I' x I' — {0,1}. As above, we
will construct constraints so that if a high fraction of the constraints on the
transformed variables z/,, y. are satisfied then the values y; , may be correctly
interpreted as the values of g on a pair (a,b), which will be seen to satisfy the
jth constraint of the original problem.

The constraint C; is transformed into a set of constraints C7 (91,92,95.f} TOF
every quadruple of functions {g1, g2, g3, f}. The constraint C’j’. is the
conjunction of five constraints, defined below.

The first two constraints ensure that the variables y; . define proper func-
tions:

{91,92,93,f}

L Yo + Yjgo = Yjgi+go

2. Yjg1 " Yige = Yigig2+95 — Yi.gs

The first test evidently ensures that function evaluation commutes with addi-
tion. The second test does the same for multiplication, with the slight caveat of
adding and subtracting the function gs. Note that if the test omitted g3 then
both sides of the constraint would be 0 with probability %, which would make
the distribution of the queries y; 4,4, significantly non-uniform, and would let
us “cheat” when assigning variables to y; ..

The third test will ensure that the pair (a,b) represented by y; . actually
satisfies P. One deterministic way to do this is to note that P is a function
from I' x T" into {0, 1}, so we can evaluate y; p and constrain it to be 1. But
as above, this test would not be robust enough since it samples y; . in a highly
non-uniform manner. We modify it to the following:

3. Yj,Ptgs — Yjgs = 1

We now note that even if we have succeeded so far in transforming each
constraint C; = P(x;,,x;,) into a way to express the variables z;, , z;,, we must
still ensure that when the same variable x; appears in multiple constraints these
representations correspond to a consistent value in I'. We do this by relating

o oy p
the variables y; . to the variables 7 , and /..

21-3

Given a univariate function f, let () denote the bivariate function f™(a, b)d:ef f(a)

that uses only its first input. Define £ similarly to be the function that uses
only its second input. We create the following two constraints to ensure consis-
tency of all the representations of the original variables:

o
4. Y5, fO4gs — Yjgs = Tjy 7

o
5. Y5, f®+gs — Yjgs = Tjy 7

From here, Dinur shows that if at least some fixed fraction of the constraints
Cj.« are satisfied then the involved variables can be “decoded” to a satisfying
assignment of the original problem. If this fraction were (say) 99%, then this
would imply that the unsatisfiability gap decreases by at most a factor of 100
under this transformation. We omit the details and move on to a proof of
Lemma 1.

4 Proof of Lemma 1

We show how to amplify the unsatisfiability gap of a max-2-SAT-Y problem.
We motivate our approach with some natural ideas that do not quite work.

The most natural approach is to replace constraints of the original problem
with pairs of constraints. Thus for every pair C; ,C;, we would form a new
constraint that consists of the conjunction Cj, ACj,. If at most 1 — € fraction of
clauses were satisfied in the original problem, then at most (1 — ¢€)? fraction will
be satisfied in the new problem, which will essentially double the unsatisfiability
gap.

However, note that after the above transformation, constraints now operate
on four variables at a time, instead of the required two. A second idea is to now
replace variables with pairs of variables, so that each constraint will now operate
on a pair of pairs of variables, instead four individual variables. In this manner,
we could transform max-2-SAT-Y problems into max-2-SAT-X2 problems, but
we might no longer be sure about the unsatisfiability gap. It turns out there
is a theorem called the “Parallel Repetition Theorem” that would imply the
desired result if instead of taking pairs of everything, we took [-tuples, for large
enough . This approach, however, introduces nonlinear blowup to the number
of constraints and variables, which we cannot afford.

The problem here is that we are trying to sample random [-tuples by using
[times as many (random) index bits, and we cannot afford linear blowup in the
number of index bits. The idea is to use some kind of pseudo-random generator
to get the effect of [-tuples using a generator that uses only additively more bits.

4.1 Amplification of BPP

In this section we recall a standard result on how to amplify the success proba-
bility of BPP algorithms using “recycled” randomness.

Let L be some language in BPP. By definition, there exists a Turing machine
A using r(n) = poly(n) random bits such that

vz € {0,1}", R<—{0P{}r<n) [A(x, R) = L(z)] >

[V)

21-4

We note that using more random bits, we can amplify this probability.
Specifically, using g(n)r(n) random bits, for some polynomial ¢, we can in-
crease the success rate from % to 1 — 279" by repeating the above experiment
q times and taking the majority outcome.

The drawback here, is that we require ¢ times more randomness.

A natural idea to try is to generate pairwise random numbers. We can
generate pairwise independent numbers from a seed consisting of just a pair of
random numbers, and thus use only 2r(n) random bits. However, because the
resulting pseudo-randomly generated numbers are not independent, the success
rate does not amplify as above. Specifically, if for fixed 2 we consider {0,1}"(")
as being divided into two sets, on one of which A returns the right answer, on
one of which A returns the wrong answer, we want a guarantee that not too
many of the pseudo-random samples will lie in the “wrong” set. We would like
to apply something like the Chernoff bound, but unfortunately that assumes

complete independence.

4.2 Expander Walks

A more hopeful idea is to construct a sequence of numbers in {0, 1}"(™) by taking
a random walk on a graph with vertex set {0, 1}T(”). If the degree of our graph
is small, some constant d, then each new sample requires only logd more bits
to specify the next leg of a random walk.

Explicitly, given a graph G, a random walk on G is a sequence R; constructed
as follows.

e Pick R € G at random.
e Pick g(n) choices i1, ...,i4(n) € {1,...,d} at random.

e Let Ry = R, and iteratively define R; to be the i;th vertex adjacent to
Ri_1.

We ask here whether such a random walk will necessarily produce elements
of the right independence properties. We immediately note that if the graph
G is composed of two disjoint pieces, then the choice of the starting point will
determine which half the rest of the walk falls into, and that such such walks
will have very bad properties for us. We want to ensure that such a case does
not happen, or in other words, that the graph is very well connected.

It turns out that expander graphs provide the desired properties.

Recall that a graph G = (V, E) is called an e-expander if for all sets of vertices
S C V that are sufficiently small, |S| < %, the number of edges crossing from
S to its complement is large:

|E(S,S)| > €lS.
We claim the following:

Claim 6 If G is an e-expander then a random walk on G hits every set S
roughly I%I‘ fraction of the time, where “roughly” is interpreted to correspond to
some kind of Chernoff bound.

This means that with r(n) 4+ d-¢(n)) randomness, we can increase our prob-
ability of success in an exponential manner by applying these Chernoff-type
bounds.

21-5

5 Dinur’s Amplification

We now briefly outline how this technique may be applied to the max-SAT
problem.

Given a max-2-SAT problem ¢ with variables zi,...,z, and constraints
C1,...,Cp,, define the constraint graph G of ¢ to be the graph on n vertices and
m edges such that each vertex corresponds to a variable x;, and each constraint
becomes an edge that connects the two variables involved in the constraint.

We then “convert” G into a d-regular e-expander graph. The construction
proceeds in two steps: the first step is to reduce the degree of G to a constant d
without changing G “too much” (this is a zig-zag product); the second step is
to add edges until the graph has good expansion properties. Denote this version
of G by G'.

Our plan is now to take a random walk on G, and verify the constraints cor-
responding to every edge we cross. Because of the above claim about expanders,
such a choice of constraints will be suitably random.

Recall however, that since many vertices of G’ may correspond to the same
vertex of GG, we have to add a compatibility check to ensure that a variable z;
takes consistent values in its different incarnations.

To do this, we apply the familiar trick of replacing G’ with some much huger
graph G” that contains enough redundancy to allow for probabilistic verification.

Specifically if ¢ is the length of our intended random walk, let G” be the
multi-graph whose vertices are the same as those in G’, but which has an edge
for every path of length at most ¢/2 in G'. Furthermore, we append to the label
of each vertex of G” the label in G’ of each of its < d*/2 neighbors. We note
that G” has alphabet nd'/?,

The constraint associated with an edge (u,v) of G” is satisfied if all of the
assignments in G’ at the intersection of the radius ¢/2 neighborhoods of u and
v are consistent, and satisfy all their constraints from G’.

Note that while such checks involve a huge amount of data, all this data is
contained in the labels of the vertices u,v € G”, so this is still an instance of
max-2-SAT.

We omit the various robustness proofs for this procedure, but note the fol-
lowing “decoding” algorithm that will help show that anything almost-satisfying
G" can be decoded to an assignment that almost-satisfies G.

Decoding assignments to G”: Given an assignment to vertices
of G”, to find a corresponding assignment to a vertex u € G’, take a
random walk of length < % from u, and whichever vertex v we end
up at, find its corresponding vertex in G, and inspect its label and
return its opinion of the value of u.

In the next lecture we will consider “recycled randomness” in more depth.

21-6

