
6.841 Advanced Complexity Theory April 27, 2005

Lecture 22

Lecturer: Madhu Sudan Scribe: Paul Valiant

1 Outline

This lecture consists of two parts. First we discuss some of the feedback given
on the previous four lectures. Then we develop the notion of randomness, from
its roots in physics, information theory, and cryptography, to its applications
to complexity theory. We aim towards some version of “BPP=P”, namely that
randomness “is” or “should be” free.

2 Lecture Comments

The complete comments are posted online at

http://theory.csail.mit.edu/~madhu/ST05/comments18-21.txt

We note here a few things of general interest that were brought up.

2.1 Self-correction

Recall that in the PCP framework, when we wanted to evaluate a function f(a)
given a table of function evaluations, we did not simply query the value indexed
by f , but rather constructed a random function f1, queried the table at the
entries indexed by f + f1 and f1, and took their difference.

Similarly, when we wished to evaluate (f ·g)(a) we did not query the table at
fg but rather constructed a random function h, and took the difference between
the values indexed by fg + h and h.

The reason for this is the following. We can show statements about PCPs
along the lines of “if a string is close to an honestly generated PCP then the
theorem must be true”. Further, we ask the verifier to probabilistically estimate
closeness of a given string to an “honest” PCP by conducting random tests and
seeing if any fail; if they all succeed, then the verifier can be fairly sure the
string lies close to an “honest” PCP and the theorem is true.

Thus it had better not be the case that by changing a tiny fraction of the
entries of a PCP one could significantly change the results of the verifier’s tests.

Consider, for example, what would happen above if we queried fg directly.
Note that since f and g take values in {0, 1}, their product will have expected
value 1

4 when f and g are drawn randomly. The fraction of {0, 1}-functions
that have expected value close to 1

4 is tiny compared with the total number of

22-1

{0, 1}-functions. Thus it had better not be the case that values from this tiny
set are queried with high probability. Specifically, we cannot query fg directly.

This suggests the trick of making the distribution of queries uniform by
adding an independent random function h. In this way we can ensure that the
PCP is sound.

This is an instance of what is more generally referred to as a “self-correcting”
probe, i.e. a probe that corrects its own mistakes. This is an area with many
applications outside the scope of this class.

2.2 Approximation Ratios

Recall that we showed the PCP theorem to be equivalent to the nonexistence of
an α-approximation to the max-k-SAT-Σ problem unless P = NP. The question
was raised whether we know anything more specific about the approximation
ratio of the max-k-SAT-Σ problem.

We note that a clause of such a problem depends on at most k bits, so will
be satisfied by a random assignment with probability at least 2−k. This implies
we have a 2k approximation algorithm for max-k-SAT-{0, 1}.

This bound looks awful. However, a recent result by Samorodnitsky and

Trevisan shows that one cannot do better than 2k−
√

k, unless P = NP.
To put this in context, we note that the existence proof of 3-query PCPs

implies that one cannot do better than 2-approximate max-3-SAT-{0, 1} unless
P = NP, while we could do a 1

8 approximation by just guessing. Thus our three
queried bits have (in a sense) an efficiency of 1

3 , since these three bits give us
1 factor of 2 soundness. The surprising fact is that with each additional bit of

the proof, we can almost double the completeness/soundness ratio, since 2k−
√

k

is so close to 2k.

2.3 Dinur’s Result

There was some confusion about various aspects of Dinur’s result. Everyone
agreed the proof went too fast. More details will be covered in an optional
session this Friday (April 29).

Also, there was some discussion of which of her techniques/results were
new/interesting. Madhu cited as a key feature of her proof a new connection
between expanders and randomness amplification.

2.4 Computationally Sound Proofs

In class so far we have seen a wide variety of notions of what a “proof” is. The
standard notion allows us to prove anything in NP. Interactive proofs allow us to
prove anything in the (much bigger?) class PSPACE, but at the cost of relaxing
the notion of soundness to be only statistical; i.e., unless the prover gets very
lucky, he will not be able to prove a false statement.

We may relax the soundness criteria even further to be computational. Namely,
a computationally sound proof (CS-proof) is one where the prover cannot prove
a false statement unless he either gets really lucky, or expends an inordinate
amount of time. We note that the relaxation from “statistical” to “computa-
tional” will appear later in this lecture with regards to a definition of random-
ness, and is an important technique.

22-2

In the proof paradigms we have considered so far, we have generally dis-
regarded the computational difficulties involved with the prover’s side of the
picture. Here they play a central role. In Arthur-Merlin protocols, by contrast,
Merlin, the prover is portrayed as “magical”. The general idea is that a com-
putationally bounded verifier might trust a prover more if he knows the prover
is similarly computationally bounded and cannot perform “magic” to fool him.

Using this notion, Micali demonstrated how to construct polynomial sized
CS-proofs of any statement in EXPTIME. Unfortunately, his results, unlike
those of the PCP theorem, rely on some extremely strong cryptographic assump-
tions, specifically something known as the random oracle model/methodology.
The details of this are beyond the scope of this lecture.

3 Randomness

We move on to our main topic: randomness. We have discussed randomized
algorithms, constructions proofs, etc. but have not discussed what randomness
means, nor how to find it.

One place to start is with physics. We believe randomness exists because
physicists say that there is randomness. Physicists cite a device called a “zener
diode”, which they tell us behaves randomly.

(We note however, that just because physicists say something exists does not
mean we should interpret it as “free” in our model of computation. Physicists
say that quantum computing exists, and that is a far from easy assumption for
complexity theorists to assimilate.)

At this point, we must consider what physicists mean by “random”. In the
case of the zener diode, they mean not completely predictable. If we measure
the voltage across a zener diode at regular intervals, we get a sequence that is
not completely predictable. However, if we measure at short enough intervals,
we notice that the voltage changes only so fast, and there is significant serial
correlation. In other words, physicists do not guarantee uniform randomness,
of the kind we need for BPP and other complexity theory tasks.

We might call randomness without such a guarantee “weak” randomness.
There is a developing computer science field of randomness extractors, where
the goal is to extract “pure” randomness from weak randomness.

We back up here and ask again what we mean by randomness. Consider the
following sequence:

010110111000011011110010001.

Is it random? What about the following sequence:

000000000000000000000000000?

We might consider a hypothetical “Turing test” for randomness, namely we
put a person in a room who tries to generate random numbers, and we are asked
to distinguish between his sequences and those produced by a coin. Which of
the above sequences would pass the test? Some of the class said that the all-
zeros sequence would never be seen from a random coin; someone else said that
no person would be stupid enough to try to pass off an all-zeros sequence as
random.

In light of this disagreement, we consult the experts.

22-3

• Shannon’s answer is no: no single string can be random; randomness is a
property of distributions.

• Kolmogorov’s answer is no: no finite string can be random; he defines a
string as random if no finite length (deterministic) program could produce
it.

• Adleman’s answer is maybe: recall his proof that BPP ⊆ P|poly; the tech-
nique was to find a single string of length n2 that could stand in for all the
randomness in the uniform distribution on {0, 1}n, at least in the context
of the fixed BPP algorithm A under consideration.

The interesting part of Adleman’s definition is that the notion of randomness
is conditional on the use to which it will be put. Namely, whether a string is
random or not depends on the algorithm A we wish to “fool”.

We clarify the model here before moving on.

3.1 Pseudo-Random Generators

A pseudo-random generator (PRG) is a (deterministic) algorithm G that takes
a “short” random seed σ as input, and produces a longer string as output, where
the output meets a criteria for randomness that we will define later.

In formal notation, we have

G : {0, 1}l → {0, 1}n,

where l < n. We consider the distribution of G(σ), when σ is uniformly random,
notated as

{G(σ)}σ←Ul
,

where Um is defined to be the uniform distribution on {0, 1}m.
For the sake of completeness, we note that a distribution D is formally

defined to be a function
D : {0, 1}n → [0, 1]

satisfying ∑

x

D(x) = 1.

We consider the distribution {G(σ)}σ←Ul
, and ask how “close” it is to our

target Un, the uniform distribution on length n strings.
The standard distance metric on distributions D1, D2 is the statistical dif-

ference, defined as follows:

|D1 − D2|
def
=

∑

x:D1(x)>D2(x)

D1(x) − D2(x).

We note that the statistical difference is symmetric:

|D1 − D2| =
∑

x:D1(x)<D2(x)

D2(x) − D1(x),

and we may thus equivalently define it in the explicitly symmetric form

|D1 − D2| =
1

2

∑

x

|D1 − D2|.

22-4

We call two distributions D1, D2 ε-close if |D1 − D2| ≤ ε. It turns out that
the statistical difference is very much related to our task of distinguishing a
distribution from random. We have the following lemma.

Lemma 1 Distributions D1 and D2 are ε-close if and only if for all algorithms
A,

Pr
x←D1

[A(x) = 1] − Pr
x←D2

[A(x) = 1] ≤ ε.

This means that if we could pseudo-randomly generate a distribution very
close to uniform, it would pass all random tests. However, we note immediately
that this is not possible. Suppose the distribution D1 : {0, 1}n → [0, 1] is uni-
form. Thus is has full support on {0, 1}n. Clearly a pseudo-randomly generated
distribution can have support on at most half this set, since G is seeded with
a string of length l at most n − 1, and G is deterministic. Looking at those
elements outside the support of G(Ul), we bound the statistical difference as

|Un − G(Ul)| ≥
∑

x/∈G(Ul)

(Un(x) − 0) ≥ 2n−12−n =
1

2
.

This means that a pseudo-random generator can never hope to fool every A,
and we must cut back our expectations if we wish to succeed.

We we introduce the notion of computational indistinguishability. The idea
is that while we can never fool all adversaries, we may realistically only concern
ourselves with computationally bounded ones.

Definition 2 We say that distribution D1 is (ε, s)-computationally indistin-
guishable from D2 if for all algorithms A that are computed with a circuit of
size s,

Pr
x←D1

[A(x) = 1] − Pr
x←D2

[A(x) = 1] ≤ ε.

As an exercise: prove that that there exists a distribution D1 with sup-
port polynomial in the size of s such that D1 is (1

10 , s) computationally indis-
tinguishable from random. The idea is very similar to Adleman’s proof that
BPP ⊆ Ppoly.

We may thus define a pseudo-random generator as a function that produces
random-looking distributions:

Definition 3 (Blum and Micali) A function G : {0, 1}l → {0, 1}n is an {ε, s}-
PRG if {G(σ)}σ←Ul

is (ε, s) computationally indistinguishable from Un.

Yao noted that if we have a function G that is computable in time t(l) and
is a (1

10 , nω(1))-PRG then

BPP ⊆ TIME(2l · t(l) · poly(n)),

since no program in BPP could distinguish {G(σ)}σ from random.
It remains to construct such generators, and examine their running time t(l).
We introduce a few such constructions from the literature.
Blum and Micali introduced the first PRG G : {0, 1}l → {0, 1}l+1, which

has running time t = poly(n), and is a (1
lω(1) , l

ω(1))-PRG.
While this generator only expands the input by 1 bit, they further showed

how PRGs could be composed to expand the input to any length. Specifically,

22-5

they showed how to transform an (ε, s)-PRG G : {0, 1}l → {0, 1}l+1 into an
(nε, s)-PRG Ĝ : {0, 1}l → {0, 1}n, by iteratively applying G to the last l digits
of its output.

Their construction, however, relies on several assumptions, including that
P 6= NP; it would thus be awkward for us to use such a generator to prove that
BPP = P.

Recall Yao’s time bound from above of 2l ·t(l)·poly(n). Since there is already
a factor of 2l, we do not need a PRG with t(l) = poly(l), but could in fact allow
exponential time. Thus we do not need the efficient PRGs that Blum and Micali
provide.

To make Yao’s bound polynomial in n, we set l = O(log n), and let t =
exp(l). We also note that it suffices to let G : {0, 1}l → {0, 1}n be a (1

10 , n)-
PRG by a simple padding argument: suppose we want to fool a BPP machine
A that takes time p(n) for some polynomial p. Thus we could express A on
inputs of size n as a circuit of size q(n) for some polynomial q. Then if we
constructed a generator G : {0, 1}l → {0, 1}q(n), it would be sufficient for it
to be a (1

10 , q(n))-PRG, as claimed above. This argument is from Nisan and
Wigderson.

Impagliazzo and Wigderson extended this argument by relating languages
that are undecidable over circuits of size s to distributions that are pseudo-
random over circuits of size s. Their result is the following:

Claim 4 If there exists a language L, and constants ε > 0, c such that language
L on inputs of length l is decidable in time 2cl, but not decidable by circuits of
size 2εl then BPP = P.

Thus circuit complexity lower bounds could prove that BPP = P. We note
that it is crucial here that the circuits are allowed to be non-uniform, because
otherwise BPP = P would follow from the time hierarchy theorem.

We will prove this claim in the next lecture.

22-6

