Today

Non-uniform classes = TMs with advice

Circuits, Formulae, Branching programs.

Formulae \leq BPs \leq Branching programs

Depth and Width; Formula depth to size relationship.

Quadratic lower bound on formula size (Neciporuk).

Barrington’s result on bounded-width branching programs.

Non-uniform computation

One way to view non-uniform computation, is in the form of a two input Turing machine.

- $M(x, y)$ in class say \mathcal{C}.
- M decides L with advice $a = \langle a_1, \ldots, a_n \ldots, \rangle$ if for every $x \in \{0, 1\}^n$
 $M(x, a_n) = 1 \iff x \in L$.
- If $|a_n| = \ell(n)$, then L said to be in \mathcal{C}/ℓ.

Most important subcase: $P/poly = polysize circuits = non-uniform polytime$.

Recall other non-uniform measures

- Formula: Circuits whose DAG is a tree.
- Branching programs: Diff. model of computation, where nodes represent decisions to be taken, and end point determines answer.
- Circuits: Fully powerful non-uniformity.

Formulae, BPs, Circuits

- f has formula size $s(n)$ implies f has BP size at most $O(s(n))$.
 - By induction: f_1 and f_2, f_1 or f_2, $\overline{f_1}$.
- f has BP size $s(n)$ implies f has circuit size at most $O(s(n))$.
 - Induction on size of BP; note that declaring any other node of BP to be start node gives BP of smaller size. Assume there is a circuit of size $c.(s-1)$ computing all other functions. Now to compute start node, will add c extra nodes. Note BP f can be written as $x_1 \cdot f_1 + \overline{x_1} \cdot f_2$.

Brief History

- Formula size lower bounds: Best known over any basis $\Omega(n^3)$ or so. Will show an $\Omega(n^2)$ lower bound today.
- BP size - slightly behind.
- Circuit size: Only $4.5n$, over AND, OR, NOT basis.
- Easy to show existence of functions that need size $2^{\Omega(n)}$.

Neciporuk’s lower bound for Formula size

- f is the Distinctness function.
 - f takes $n\ell$ bits as input. (Will later set $\ell = 2 \log_2 n$.)
 - View input as X_1, \ldots, X_n where $X_i = \langle x_{i,1}, \ldots, x_{i,\ell} \rangle$.
 - $f(X_1, \ldots, X_n) = 1$ iff $\exists i \neq j$ s.t. $X_i = X_j$.
 - Thm: f needs formulae of size at least $\Omega(n^2)$, provided $\ell \geq 2 \log_2 n$.

Proof

- Basic ideas: Counting, and restrictions.
- Claim 1: Number of leaves involving variables from X_i is at least $\Omega(n)$.
 * Assume o.w. Let $\#$ leaves $= k$.
 * Then $\#$ formulae obtained by restricting other variables to 0/1 is at most $2^{O(k)}$.
 * But $\#$ functions obtained by other restrictions is at least $\binom{2^{\ell}}{n-1}$.

Moving on

- Size lower bounds very weak in unrestricted case. So restrict models and then prove strong lower bounds.
- Example: consider monotone functions (changing input bit from 0 to 1 cannot change output from 1 to 0), and prove lower bounds for circuits without negation.
- Example: Restrict "depth" of circuit/BP, "width" of branching program.
Depth, Width

- Depth of DAG = length of longest path in DAG.
- Width of Layered DAG:
 * DAG is layered if vertices are partitioned into layers L_1, \ldots, L_k and all edges run from L_i to L_{i+1}.
 * Width of Layered DAG is max number of vertices in Layer.
- Can define width of unlayered DAG also, but not as clean.

Basic observations about depth

- Depth of circuit = parallel time; Can even allow unbounded fan-in OR/AND, to simulate CRCW models.
- Circuit depth = formula depth.
- Formula depth = $\Theta(\log \text{Formula size})$.
- Thus Formula size $\text{poly}(n) = \log n$ depth.
- In upcoming lecture: Show limitations of poly size circuit of constant depth (with unbounded fan-in OR/AND).
- Depth of BP = time. (Size = space).

Basic observations about width

- Width of BP = non-uniform space.
- Fair amount of intuition obtained by unravelling DFAs. (DFA unravelling leads to Layered read-once branching program.) Thus $O(1)$-width BPs can count modulo $O(1)$.
- Early belief: possibly can’t do anything else. Can’t compute majority?
- Easy to rule out poly size width-2 BPs computing majority. Hard result: width-3 BPs can’t compute majority. Hope in the 80s ... will eventually rule out all $O(1)$ width (or even sublinear width).

- Major recent breakthrough: Ajtai shows explicit functions requiring nearly linear space to be done in nearly linear time. (Won’t cover.)
Barrington’s Theorem

- Every function with poly size formula can be computed with width 5 bp.

- Ben-Or Cleve Proof:
 - wlog: prove for log-depth arithmetic formula. (Why does this suffice? Exercise!)
 - Prove for 3-register machines = width 8 bps. (slightly weaker).

Define Register Machines

Ben-Or + Cleve proof of Barrington