Today: Quantum Computing + Wrap-up

- Quantum Wire
- Quantum Information
- Quantum Measurements
- Quantum Gates
- Quantum Circuit
- Quantum Algorithm for Factoring.

Preliminaries

Quantum Wire Carries a vector in complex 2-dimensional space.

\(n \)-Quantum wires Carry a vector in complex \(2^n \)-dimensional space.

Measurement Can read, say, the first \(i \) “qubits”: Result: \(i \) classical bits + \(n - i \) qubits, as follows: Let initial configuration: \(\sum_x \alpha_x |x\rangle \). For \(x' \in \{0,1\}^i \), let \(p_{x'} = \sum_{y \in \{0,1\}^{n-i}} \alpha_{x' \otimes y}^2 \). Then see \(x' \) with probability \(p_{x'} \) and \(n - i \) qubits are in state \(\sum_y \frac{\alpha_{x' \otimes y}}{\sqrt{p_{x'}}} |y\rangle \).

Gates \(c \)-qubit gate is a "linear map \(G : \mathbb{C}^{2^c} \rightarrow \mathbb{C}^{2^c} \) such that \(\langle G(x), G(y) \rangle = \langle x, y \rangle \)" (referred to as unitary operator).

Interesting gates are:

- Hadamard Gate: \(\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \)
- Quantum NOT Gate: Maps \(|a, b\rangle \) to \(|a, b \oplus \neg a\rangle \).
- Quantum AND Gate: Maps \(|a, b, c\rangle \) to \(|a, b, c \oplus (a \land b)\rangle \).

Above gates suffice to approximate any other quantum gate to within arbitrary precision.

Quantum Circuit \(n \) quantum wires + \(m \) gates + measurement at the end.

What can Q-Circuits Do?

3 Famous Algorithms:

- Simon’s algorithm to detect collisions (promise + oracle problem).
- Shor’s algorithm to factor integers
- Grover’s algorithm to search for NP witnesses (oracle problem).
Simon’s problem

Given: \(f : \{0,1\}^n \rightarrow \{0,1\}^n \).

Yes Instance: Exists \(s \in \{0,1\}^n \) such that \(f(x) = f(y) \Leftrightarrow y = x + s \).

No Instance: \(f \) is 1–1. Task: Decide which case.

Simon’s Algorithm

(Omitting normalizing constants)

\[
|0^{2n}\rangle \rightarrow \sum_x |x0^n\rangle \\
\rightarrow \sum_x |xf(x)\rangle \\
\rightarrow \sum_{x,y} (-1)^{\langle x,y\rangle} |yf(x)\rangle
\]

- Now measure all 2n qubits.
- In NO instance: All 2n bit strings equally likely.
- In YES instance: \(y \)-part has inner product 0 with \(s \).
- Repeat experiment \(O(n) \) time and get a full rank collection of \(y \)'s, \(s \) is the (unique) vector orthogonal to all.

Shor’s algorithm

Key insight: Simon’s algorithm discover’s periods in groups. Can apply to other groups. Technical issues arise if group is not ”nice”, but can be dealt with.

Idea: To find factors of \(N \), suffices to find \(r \) such that \(a^r = 1 \pmod{N} \). So need to consider the map \(r \mapsto a^r \pmod{N} \) and find kernel of this map. Simon considers the map \(x \mapsto f(x) \) and finds kernel of this map.

Idealized algorithm

\[
|00\rangle \rightarrow \sum_i |i0\rangle \\
\rightarrow \sum_i |ia^i\rangle \\
\rightarrow \sum_{i,j} (\omega)^{ij} |ja^i\rangle \quad \text{(where } \omega^N = 1)\]

Now measuring \(j \) gives random multiples of \(N/r \).
Actual algorithm: Issues

Can’t do N-ary Fourier transform.

Shor’s fix: Pick $Q = 2^k$, $Q \gg N$. Then the Fourier transform can be implemented effectively.

But now j reported is not a random multiple of N/r, but rather an integer such that $[rj]$ is small modulo Q. Can use integer programming in $O(1)$ variables to find r.

Details omitted.

Wrap-up

Saw lower bound techniques.

Power of randomness, and some algebra.

Main take-away messages: Computation captures many remarkable phenomena.

”Proof of existence of colors”.

”Pseudo-randomness”.

”Knowledge complexity of interaction”.

Seemingly unrelated tasks can be fundamentally related. Relationship becomes evident when one focusses on computational implications. Shor’s factoring; Connection between PCP and inapproximability. Trevisan’s extractor; Lipton’s hardness for permanent.

Future?

More derandomizations (Factorization of polynomials, Polynomial identity testing, RL).

Better understanding of circuit complexity. (Is second level of EXP hierarchy the best possible?).