Today: Data Compression

Some limits to compressibility.

First: A review of the last two lectures.

First few lectures: Studied properties of:
- entropy, conditional entropy, mutual information, relative entropy
- One consequence: if variable X has large conditional entropy given Y then any attempt to determine X from Y has large error (Fano's lemma)

Lecture 4: restrict to variables X, Y

An sequence of i.i.d. variables
distrbuted according to \(X \)

when \(\overline{X} = (X_1, \ldots , X_n) \) then

w.p. \(\geq 1 - \delta \)

\[\Pr_{\overline{X}} \left[p(\overline{X}) \in \left[2^{-(H(x) + \varepsilon) n}, 2^{-(H(x) - \varepsilon) n} \right] \right] \geq 1 - \delta \]

(Typical set) \(A_{e}^{(n)} = \left\{ \overline{x} \in \mathbb{Z}^n \mid p(\overline{x}) \in \left[\right] \right\} \)

\(A_{e}^{(n)} \) has size \(\approx 2^{H(x) \cdot n} \)

with each \(A_l \) having prob. \(\approx 2^{H(x) \cdot n} \).

(flat dist. on small set)

\[\text{[didn't say but } \delta \approx \exp(-\varepsilon^2 n) \] \]

leads to formal proof that

- \(X \) can be compressed into \(\sim H(x) \cdot n \) bits in expectation

- \(X \) can't be compressed to much less than \(H(x) \cdot n \) bits
LECTURE 5: $X = \text{stochastic process}$

(Leap, time-invariant, irreducible, aperiodic, Markov chain)

Stochastic \\Rightarrow Stationary \\Rightarrow Time Inv. Markov Chain in stationary distribution

Entropy rate of $(\cdot): \mathcal{H} (X_t | X_{t-1})

= \sum_{i,j} \pi_{ij} \log \frac{1}{\pi_{ij}}$

where π = transition probability matrix

$\pi = \text{Stationary dist.}$

$(\Delta \rho)$: \[P_r \left[\rho (\bar{x}) \in \left[2^{-(\mathcal{H} (\bar{x}) + \varepsilon)n}, 2^{-(\mathcal{H} (\bar{x}) + \varepsilon)n} \right] \right] \geq 1 - \delta\]

$\delta \approx \exp (-\varepsilon^2 n)$
Finally

Hidden Markov chains

\[X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \]

\[\downarrow \quad \quad \quad \quad \quad \downarrow \]

\[Y_1 \quad Y_2 \quad \cdots \quad Y_n \]

Entropy rate

\[H(Y) = \lim_{n \to \infty} H(Y_n | Y_{n-1}, \ldots, Y_1) \]

Exists, but not easy to compute

Now to today's lecture.
Goal: to "compress" X into a string of letters over \mathcal{D}.

but

1. What is compression?
2. What is the objective?

E.g. $X \in \mathcal{Z} \ldots N$?

$X = i$ w.p. q_i

Is $C(i) = 0 \neq i$ "compression"?

Trade off between "compression" & loss of information

We wish to compress without losing (too much) information.
Terminology

- \(\mathcal{X} \) = space of \(X \)
- \(\mathcal{D} \) = alphabet for compression
- \(\mathcal{D}^* = \cup_{n \geq 0} \mathcal{D}^n \) = set of finite strings over \(\mathcal{D} \)

 for \(w = (w_1, \ldots, w_n) \in \mathcal{D}^n \), \(|w| = n \)

Compression algorithm

\[C: \mathcal{X} \rightarrow \mathcal{D}^* \]

accompanied by \textit{Decompressor}

\[\text{Dec}: \mathcal{D}^* \rightarrow \mathcal{X} \]

Lossy compression: \(\Pr_x \left[\text{Dec}(C(x)) \neq x \right] \ll \text{small} \)

Lossless compression: \(\forall x \in \mathcal{X} \text{ Dec}(C(x)) = x \)
if C s.t. \exists Dec \Rightarrow

(C, Dec) lead to lossless coding

then C is called Non-Singular

We will talk only about Non-Singular

(lossless coding) but many results extend to lossy coding as well.

(e.g., we mean limitations result of lossy)

Goal / Measure = ?

Expected Length: $\mathbb{E} \left[|C(x)| \right]$

Minimize
Example \(S = \{ 1 \text{ w.p. } \frac{1}{2}, 2 \text{ w.p. } \frac{1}{4}, 3 \text{ w.p. } \frac{1}{8}, 4 \text{ w.p. } \frac{1}{8} \} \)

\[D = \{0, 12\} \]

\underline{Code 1}:
\[C(1) = 00, \quad C(2) = 01, \quad C(3) = 10, \quad C(4) = 11 \]

\[\mathbb{E}\left[|C(x)| \right] = 2 \]

\underline{Code 2}:
\[C_2(1) = 00, \quad C_2(3) = 00, \quad C_2(2) = 1, \quad C_2(4) = 10 \]
\[E \left[1_{C_2}(x) \right] = \frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 2 = \frac{5}{4} \]

- But something unsatisfactory about second code?

Second code is not extensible.

Real goal to get a code for sequence \((X_1, \ldots, X_n)\) where \(X_i \sim X\) (say i.i.d.)

Code for \(X\) suggests extension code of \(X^n\)

\[C(X_1, \ldots, X_n) = C(X_1), C(X_2), \ldots, C(X_n) \]

Code \(C_2\) above is non-singular

but extension is not!
(E.g. $C_2(11) = C_2(3)$)

& $C_2(113) = C_2(311)$

Motivates another definition

C is uniquely decodable

if for all n, the n-extension of C is non-singular.

Example of uniquely-decodable code

$C_3(1) = 0$ 1 w.p. $\frac{1}{2}$
$C_3(2) = 10$ 2 w.p. $\frac{1}{4}$
$C_3(3) = 110$ 3 w.p. $\frac{1}{8}$
$C_3(4) = 111$ 4 w.p. $\frac{1}{8}$

$E[\text{length}] = 1.75$

Another example

$C_4(1) = 0$ $C_4(2) = 01$ $C_4(3) = 011$ $C_4(4) = 111$
Proof of unique decodability of C_2.

Property of C_3

- For all $x, y \in S^2$, $C(x)$ is not a prefix of $C(y)$.

Motivates another definition:

C is a prefix code if and only if:

For all $x, y \in S^2$, $C(x)$ is not a prefix of $C(y)$.

Claim: Prefix code is uniquely decodable.

Proof: Let $C(x_1, \ldots, x_n) = w_1 \ldots w_m$.

Then $x_i = y_i$ (since $C(x_i)$ must
be a prefix of $C(y)$ or vice versa).

But now by induction we have

$$C(x_1 \ldots x_n) = w_{k+1} \ldots w_m = C(y_1 \ldots y_{k-1})$$

where $C(x_1) = w_1 \ldots w_k = C(y_1)$

so $x_2 \ldots x_n = y_{k+1} \ldots y_{n-1}$ [i.e. $n=k$].

Proof of unique decodability of C_4

(well $C_4 = C_3$ in reverse)

Prefix codes (C_3) are nicer than non-prefix codes (C_4) since they can be decoded online.

Hence also called instantaneous
In the rest of the lecture we will study:

- **Limitations on Compressibility**
 - Kraft lower bound
 - McMillan lower bound
 - Entropy lower bound

Next lecture will match goals.

Main target for this lecture:

\[
\mathbb{E}_{x} \left[|C(x)| \right] \geq \frac{H(x)}{\log D}
\]

for any prefix-free or uniquely decodable code \(C \).
Actually yields
\[E \left[|C(x)| \right] = K \]

then \[K + O(\log K) \geq \frac{H(x)}{\log D} \]

for any non-singular code \(\text{[Won't show this but will show } \)

Main tool towards Entropy bound

1. Kraft's Inequality

Theorem (Kraft): if \(C(i) \) has length \(l_i \)

for \(i = 1 \ldots N \) over \(D \)-ary alphabet

then \(\sum D^{-l_i} \leq 1 \), if \(C \) prefix code.
Proof: Consider D-ary tree with branches density various letters of D. Example with D = 2

for node at level \(i \), associate weight \(D^{-i} \). Note that the weight of the root = 1.

Weight of every node = Sum of uts. of children.
Now let's understand "C(i)'s, for every i mark node C(i).

e.g.

\[
C(0) \implies 1^0 = 1 \\
C(1) \implies 11^1 = 11 \\
C(2) \implies 110^2 = 110 \\
C(3) \implies 111^3 = 111
\]
Retain only the part of the tree that lies on the path from some \(C(i) \) to the root.

Reassign weights, leaving weights of \(C(i) \) as they were & putting in for every node weight = sum of weight of its children.

- On the one hand weights of nodes don’t go up

- On the other hand weight of root

\[
\sum_{i=1}^{n} t_i \leq 0
\]

Thus

\[
\sum_{i=1}^{N} t_i \leq 0 \leq 1
\]
McMillan's Bound

Theorem: if \(C \) is uniquely decodable
\[|C(i)| = l_i \] then
\[\sum_l \cdot l_i \leq 1 \]

Proof: (Optional. See cover 4 Thomas)

Entropy lower bound

Note: Kraft says nothing about probability.
To relate to Expected Decoding Length...
\[\mathbb{E} \left[|C(x)| \right] = \sum_{x \in X} p(x) \cdot l_i \]
But now let's write $C_i = -\frac{\log d_i}{\log D}$

$$E \left[\log C(x) \right] = -\sum_{i=1}^{N} p_i \log \frac{d_i}{\log D}$$

But $\sum d_i \leq 1$ [Kraft]

Let $q_i = d_i^{-\epsilon_i}$

And let $\sum d_i^{-\epsilon_i} = 1 - q_0$

$$E \left[\log C(x) \right] = -\sum_{i=1}^{N} p_i \log q_i$$

$$= H(X) + \frac{D(P \| Q)}{\log D} \geq H(X)$$
Conclude

Theory: if C is prefix free or uniquely decodable then for $x \sim p$

$$
\mathbb{E}_{x} \left[|C(x)| \right] \geq H(x)
$$

Answer 1: Not a fair question. Really need unique decodability.

Answer 2: Doesn't make much difference.
Lemma: if C is non-singular code of length K, then $\exists C'$ prefix free of
expected length $K + 2 \lceil \sqrt{K} \rceil$.

(Can probably do better....)

Proof:

Given C, first produce C',

such that $\forall i \ |C'_i(i)|$ is a multiple of $\lceil \sqrt{K} \rceil$. We have

$\mathbb{E} \left[|C'(x)| \right] \leq \mathbb{E} \left[|C(x)| \right] + \lceil \sqrt{K} \rceil$

(since no string extends by more than $\lceil \sqrt{K} \rceil$.

Now produce C_2 where

$|C_2(i)|$ is a multiple of $\lceil \sqrt{K} \rceil + 1$
as follows.

Suppose \(C_1(i) = \begin{bmatrix} w_1 & w_2 & \cdots & w_c \end{bmatrix} \)

when \(|w_j| = \sqrt{K} \)

then \(C_2(i) = \begin{bmatrix} w_1 & 0 & w_2 & 0 & \cdots & w_c \end{bmatrix} \)

\[\uparrow \quad \gamma \quad \gamma \quad \gamma \quad \gamma \quad \gamma \quad \gamma \]

all zeroes ONE

Claim: \(C_2 \) is prefix free (why?)

\[E \left[|C_2(X)| \right] \]

\[\leq \frac{\lceil \sqrt{K} \rceil + 1}{\sqrt{K}} \cdot \frac{E \left[|C_1(X)| \right]}{\sqrt{K}} \]

\[= (\sqrt{K} + 1)(\sqrt{K} + 1) \leq K + O(\sqrt{K}) \]
Conclude

Essentially for any reasonable
encoding

\[E \left[1 \cdot C(X) \right] \geq \frac{H(X)}{\log D} \]

But is this tight?

Will see in next lecture.