
6.441 Transmission of Information Mar 14, 2006

Lecture 10
Lecturer: Madhu Sudan Scribe: Srujan Linga

1 Last lecture

• Universal Coding

• Lempel-Ziv Algorithm

2 Today

• Channel capacity

• Sample channels and their capacities

• AEP for channels

3 Communication System Overview

The block diagram in Fig.1 shows an overview of the communication system.

Figure 1: Block diagram of the communication system

The transfer of information from the transmitter to the receiver is a physical process and therefore is
subject to noise and imperfections of the signalling process itself. Hence it is a property of physics
that there are no perfect channels. A modified block diagram with an encoder and decoder introduced
into the communication system is shown in Fig.2. Source symbols S from some finite alphabet ΩS

are mapped into some sequence of channel symbols X of alphabet ΩX . The output sequence Y of the
channel (input to the decoder) is random but has a distribution that depends on the input sequence X.
From the output sequence, we attempt to recover the transmitted message.

3.1 Basic features of the channel

Considering a block of n channel symbols, let

1. pXn(xn) denote the probability distribution on an n-element sequence from ΩX which is under the
designer’s control.

2. pYn|Xn(yn|xn) denote the probability that yn is received given xn was transmitted.

3. PYn|Xn(yn|xn) denote an |ΩX |n×|ΩY |n stochastic probability transmission matrix of the channel.
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Figure 2: Block diagram with encoder and decoder

3.2 Channel Capacity

Let the capacity of the channel transmitting n-length sequences be given by C(n), the n-fold capacity of
the channel. Then,

C(n) = max
pXn (xn)

(
1
n
I(Xn;Yn))

We would like to understand the behavior of C(n) as n →∞.

3.3 Channel Classes

The classes of channels we want to consider today are Discrete Memoryless Channels (DMC’s). These
channels have the following properties:

1. Discreteness: Both ΩX and ΩY are finite sets.

2. Memoryless: The behavior of the channel at time t is independent of the time and past inputs/outputs
of the channel. More precisely,

pYn|Xn(yn|xn) =
n∏

i=1

pY|X(yi|xi)

Roughly, outputs of memoryless channels capture the same idea as i.i.d outputs of the source.
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3.4 Capacity of a Discrete Memoryless Channel

C(n) = max
pXn (xn)

(
1
n
I(Xn;Yn)) (1)

= max
pXn (xn)

(
1
n
I(Yn;Xn)) (2)

=
1
n

max
pXn (xn)

(H(Yn)−H(Yn|Xn)) (3)

=
1
n

max
pXn (xn)

(
n∑

i=1

H(Yi|Yi−1, Yi−2...Y1)−H(Yn|Xn)) (4)

≤ 1
n

max
pXn (xn)

(
n∑

i=1

H(Yi)−H(Yn|Xn)) (5)

=
1
n

max
pXn (xn)

(
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)) (6)

=
1
n

max
pXn (xn)

(
n∑

i=1

(H(Yi)−H(Yi|Xi))) (7)

= max
pXn (xn)

(
n∑

i=1

I(Yi;Xi)
n

) (8)

where equation (2) arises due to symmetry of mutual information, equation (4) arises because of the chain
rule of entropy, inequality (5) arises because conditioning only reduces the entropy and the property of
discrete memoryless channel was used in (6) to expand H(Yn|Xn). The result in (8) tells us that
maximizing I(Yn;Xn) over pXn(xn) is equivalent to maximizing I(Yi;Xi) for each i from 1 to n.
Therefore pXn(xn) may well be a product distribution, i.e. we may choose Xi to be i.i.d random
variables so that pXn(xn) =

∏n
i=1 pXi(xi) and pXi(xi) = pX(x) for each i. Now, since

max
pX(x)

(I(Y ;X)) = C(1)

we have,

C(n) =
∑n

i=1 C
(i)

n
= C(1)

Therefore, n-fold usage of the channel is no greater than 1-fold usage in terms of the channel capacity.
Note that if we choose X ′

is to be independent, Y ′
i s are also independent due to the property of memoryless

channel and hence the channel capacity can be achieved with equality. So, for independent Xi, C(n) =
C(1) = maxpX(x)(I(Y ;X)).

4 Examples of Channel Capacity

4.1 Binary Erasure Channel (BEC)

Consider the Binary Erasure Channel shown in Fig.3. A BEC has two inputs 0 and 1 and a fraction p
of the bits are erased. The receiver knows which of the bits have been erased. We calculate the capacity
of the channel as follows,
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Figure 3: Binary Erasure Channel

C(1) = max
pX(x)

(I(X;Y ))

= max
pX(x)

(H(X)−H(X|Y ))

= max
pX(x)

(H(X)−H(X|Y =?)︸ ︷︷ ︸
=H(X)

Pr(Y =?)︸ ︷︷ ︸
=p

)

= max
pX(x)

(H(X)−H(X)p)

= max
pX(x)

(H(X)(1− p))

= 1− p

where the last equality was derived because maximum value of H(X) is 1 bit. This result gives us the
following intuition: a) One will be able to “push” through roughly (1 − p) bits every time unit; b) For
every n bits one transmits, one would expect to see roughly n(1− p) bits without erasures. This insight
leads us to the following encoding scheme which asymptotically achieves zero error probability: If the
encoder picks up source strings (S) of length n(1 − p) and encodes them into channel symbols (X) of
length n, i.e. we add some form of redundancy to the source sequences, then by the above observations,
the output sequence (Y) has approximately n(1− p) correct symbols which can then be decoded to S

′

at the receiver. For this scheme it can be shown that, asymptotically, Pr(S = S
′
) = 1 as n →∞. This

scheme is depicted in Fig.4.

4.2 Binary Symmetric Channel (BSC)

Consider the Binary Symmetric Channel shown in Fig. 5. The capacity of a BSC can be calculated as
follows:
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Figure 4: Proposed encoding scheme

Figure 5: Binary Symmetric Channel

10-5



C(1) = max
pX(x)

(I(X;Y ))

= max
pX(x)

(H(Y )−H(Y |X)︸ ︷︷ ︸
H(p)

)

= max
pX(x)

(H(Y )−H(p))

= max
pX(x)

(H(Y ))−H(p)

≤ 1−H(p)

where the final inequality is achieved if pX(x) is a uniform distribution.

4.3 Noisy Typewriter

In this case, the channel input is either received unchanged at the output with probability 1
2 or

transformed into the next letter with probability 1
2 . The channel transition probability matrix for

such a channel is shown in Fig.6.

Figure 6: Channel matrix for the noisy typewriter

The channel transition matrix, PYn|Xn(yn|xn) is symmetric and has the following properties:

1. Every row of PYn|Xn is a permutation of the first row.

2. Every column of PYn|Xn is a permutation of the first column.

For such a channel,
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C(1) = max
pX(x)

(I(X;Y ))

= max
pX(x)

(H(Y )−H(Y |X))

≤ max
pX(x)

(H(Y ))− min
pX(x)

(H(Y |X))

= max
pX(x)

(H(Y ))− (Entropy of the first row)

≤ log(|ΩY |)− (Entropy of the first row)

where the final inequality is satisfied if pX(x) is a uniform distribution. Therefore for the noisy typewriter,
C(1) ≤ log(26)− 1 = log(13) bits.
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