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6.441 Transmission of Information April 6, 2006

Lecture 14
Lecturer: Madhu Sudan Scribe: Adam McCaughan

Today

• Feedback Capacity

• Joint Source Channel Coding

• Start Continuous Channels

Admin

• PS3 due Thursday (04/12)

• Tuesday 4:15pm in 32-155 – Venkat Guruswami ”‘Channel Coding...”’

Feedback Capacity

• Recall basic model of a channel

X  ... Xn1 Y  ... Yn1
Channel

• In order to ask how well the channel performs, we apply an encoder and decoder

X  ... Xn1 Y  ... Yn1

Channel Decoder
W  ... Wk1 W  ... Wk1

Encoder

• Which more or less pins down exactly how the channel performs

C = pmax
x I(X;Y )

How much capacity do we get with feedback?
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• In other words, given Y1, . . . , Yn what is the maximal R such that the receiver can compute
W1, . . . ,Wk=Rn (where wi ∈ {0, 1}) with a Perror → 0

• Denote this maximal R to be the ’feedback channel capacity’, CFB

• It’s obvious that if you just construct an encoder with zero feedback, you’re able achieve at
least C, ie CFB ≥ C

• Now the question remains: Is it possible to improve capacity with feedback? Short answer:
No. Proving this shows the strength of Shannon’s coding theorem.

Lemma 1 (CFB ≤ C)

• H(W ) = Rn - The entropy of W is fairly large

• H(W |Y n) ≤ 1 + PerrorRn. Fano’s Inequality

• If H(W |Y n) wasn’t small we wouldn’t be able to calculate W , given Y

• These two points imply that Y n contains a lot of information

I(W ;Y n) = H(W )−H(W |Y n)
≥ Rn − 1− PerrorRn

• PerrorRn is vanishingly small

Question: Is I(W ;Y n) ≤ nC ?

I(W ;Y n) = H(Y n)−H(Y n|W ) (1)

≤
n∑

i=1

H(Yi)−H(Y n|W ) (2)

Y1 . . . Yi−1,W is enough to fully determine Xi:

H(Y n|W ) =
n∑

i=1

H(Yi|Y1 . . . Yi−1,W )

=
n∑

i=1

H(Yi|Y1 . . . Yi−1,W,Xi)

=
n∑

i=1

H(Yi|Xi)

Then from (2)
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I(W ;Y n) ≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

=
n∑

i=1

I(Yi;Xi)

= nC

Conclusion: Feedback doesn’t contribute to capacity

• Previously we always looked at either

– Uniform distributions on the source with a noisy channel

– Clean channels with non-uniform sources

• We have now learned enough to combine non-uniform source with a noisy channel

• Simply need to look at the rate of the source, and the capacity of the channel. Then compare
R and C

– Apply compression algorithm to the source

– Apply channel coding algorithm

Encoder
Source
Coder

Channel
Coder

Decoder
Channel
Decoder

Source
Decoder

Joint Source-Channel Coding Theorem

• If W1 . . .Wk is produced by source W with entropy rate H(W ) → (source satisfies AEP)

• and if it’s on a DMC with capacity C

– Then communcation is possible with Perror → 0 iff H(W ) < C

• After n steps of the source, it’s producing on a uniform distribution of size 2H(W )n

• This concludes our discussion of the DMC
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Continuous Channels

• We will begin by looking at a very simple channel

– Input to channel X: [−1, 1] (Real number)
– Output of channel Y : Real number
– Looking at the simplest case: noiseless channel (ie X = Y )

• Can’t look at this in our typical manner because we can’t define a finite alphabet to describe
either input or output

• However, since X = Y , our channel capacity is apparently infinite

• What makes the channel capacity finite is the existance of noise

• Adding noise Z to our model

– Y = X + Z

– Z is uniform over [−ε, ε] and independent of X

– Divide input into intervals of 2ε – ’discretize it’
– Then C ≥ log(1/ε)
– We will prove that the capacity is less than infinite in the future

Continuous Random Variables

• X is a real-valued r.v.

• fX(x) → Probability Density Function (PDF)

• FX(x) → Cumulative Distribution Function (CDF)

– FX(x) = Pr[X ≤ x] =
∫ x

−∞ fX(t)dt

– Monotonic, nondecreasing

• Given

f z

f x

0

• It is clear that just the pdf of the r.v. is not particularly revealing. However, comparing X and
Z, one can certainly intuit that X is ’more random’ than Z. How, then, do we quantitatively
compute that?

• Because this is not as easy to interpret:

f Y

f x

0
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• Xε: X discretized X by intervals of length ε, Yε ∈ Z

0

• limε→0{H(Xε)−H(Yε)} ?

• Say we partition ε lots more: ε → ε
2l

• → H(Xε

2l ) ≈ l + H(Xε)

• and the same thing is happening to Y

• For X+Y , limε→0{H(Xε)−H(Yε)} is well-behaved, but we want a quantity that only depends
on X. For X alone what should we use as H(X)?

Differential Entropy

• H(X) , limε→0{H(Xε)− f(ε)}

• (We’re going to be measuring against something like a baseline distribution)

f( ε
2l ) = l + f(ε) → f(ε) = log( 1

ε )

then H(X) = limε→0{H(Xε) + log ε}

• Written in terms of the pdfs:

H(X) = −
∫∞
−∞fX(x) log[fX(x)]dx

Examples

Example 1 - Entropy of the Uniform Distribution

X = uniform(a, b)
fX(x) = 1

b−a if a ≤ x ≤ b, 0 otherwise

H(X) = −
∫ b

a
1

b−a log( 1
b−a )dx = log(b− a)

• Not scale invariant.

Example 2 - Entropy of a Gaussian

X = N(0, σ2)

fX(x) = 1√
2πσ2 exp−

x2

2σ2 if a ≤ x ≤ b, 0 otherwise
H(X) = −

∫∞
−∞ fX(x) log fX(x)dx

H(X) = 1
2 log(2π expσ2)

• Logarithmic in the variance
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Future Lectures

• Try to understand how differential entropy behaves

• Look at AEP/LLN in this setting

• Continuous channels and how dif. entropy and mutual information play a role in determining
capacity


