Today

- Differential entropy
 - Conditional entropy, Joint entropy, Mutual information...
- Channel capacity

Admin

- PS3 due tomorrow
- Office hours, Thursday afternoon (send email)

Motivations from last time

Recall the “6.441 channel”. We had input $X \in [-1, 1]$, noise $W \sim \text{Uniform}[-\epsilon, \epsilon]$, and output $Y = X + W$. We saw that

- If $\epsilon = 0$, channel has infinite capacity.
- If $\epsilon > 0$, channel has finite capacity.

Differential Entropy

Beginning with differential entropy, introduced last time, let us analyze this channel. We have X taking values in \mathbb{R} with pdf $f = f_X$. Recall that we are working with X_ϵ, the ϵ-discretization of X. Then

$$h(X) \triangleq \lim_{\epsilon \to 0} \{H(X_\epsilon) + \log \epsilon\} = -\int_{-\infty}^{\infty} f_X(x) \log(f_X(x))dx \quad \text{(if well behaved)}$$

Differential entropy is similar to “discrete” entropy but it is important not to draw too many conclusions from this similarity. For example, consider the following:

- $X \sim \text{Uniform}(a, b)$
- $h(X) = \log(b - a)$
• \(h(aX) = h(X) + \log|a| \)

Note that for some choices of \(a \), goes to \(\infty \), or if \(b-a \) is very small, \(\log(b-a) < 0 \). So caution: \(\exists X \) s.t. \(h(X) < 0 \) which is never true with \(H(X) \) (when \(X \) is discrete)

Definitions

We now proceed to develop concepts for continuous random variables along the lines of those developed for discrete random variables. Consider a collection of random variables \(X_1 \ldots X_n \) (real-valued) with pdf \(f(X_1, \ldots, X_n) \).

Joint Entropy

\[
\begin{align*}
\quad h(X_1, \ldots, X_n) &= -\int_{X_1, \ldots, X_n} f(x_1, \ldots, x_n) \log f(x_1, \ldots, x_n) \, dx_1 \ldots dx_n
\end{align*}
\]

Conditional Entropy

Consider \((X, Y)\) with joint distribution \(f(X, Y) \), marginal distributions \(f_X, f_Y \), and conditional distribution \(f_{X|Y}(x|y) \). Then

\[
\begin{align*}
\quad h(X|Y) &= -\int_Y f_Y(y) \left[\int_X f_{X|Y}(x|y) \log f_{X|Y}(x|y) \, dx \right] \, dy
\quad = -\int_X \int_{X,Y} f(x, y) \log f_{X|Y}(x|y) \, dx \, dy
\end{align*}
\]

Divergence

The divergence between pdf’s \(f \) and \(g \) is

\[
D(f||g) = \int_X f(x) \log \frac{f(x)}{g(x)} \, dx
\]

Furthermore,

\[
D(f||g) \geq 0 \quad \text{(usual proof by Jensen’s Inequality)}
\]

Applying this,

\[
(x, y) : D(f||f_X, f_Y) \geq 0 \implies h(X|Y) \leq h(X)
\]

(Conditioning reduces entropy)

Note: when *comparing* entropies, any “\(\log \epsilon \)" terms show up on both sides and the comparison makes sense. Generally however, this is not true for the actual “values”.

Mutual Information

\[
I(X;Y) = h(X) - h(X|Y) \geq 0
\]

If \(X \) and \(Y \) are “continuations” (opposite of discretizations) of discrete \(\tilde{X}, \tilde{Y} \) then \(I(X;Y) = I(\tilde{X};\tilde{Y}) \).
Chain Rule

\[h(X, Y) = h(X) + h(Y | X) \]

Maximum entropy distributions

Uniform distribution

Among random variables \(X \) taking values in \([0, 1]\) the differential entropy is maximized by the \(X \sim \text{Uniform}(0, 1) \).

Proof 1

Let \(X \) be any r.v. taking values in \([0, 1]\).
Let \(Y \) be any r.v. with distribution \(\text{Uniform}(0, 1) \), independent of \(X \).
Let \(Z = (X + Y) \mod 1 \)

Then
\(f_Z \) is Uniform(0, 1) (not hard to show)
\(f_{Z|X} \) is Uniform(0, 1)

\[h(Y, Z) = h(X, Y) = h(X) + h(Y) \]

\[h(Y, Z) \leq h(Y) + h(Z) \]

\[\implies h(X) \leq h(Z) \]

Proof 2 (Chung’s proof)

\[h(X) = E \left[\log \frac{1}{p(X)} \right] \]
\[\leq \log \left[E \frac{1}{p(X)} \right] \quad \text{(Jensen’s inequality)} \]
\[= \log \left[\int_S p(x) \frac{1}{p(x)} \, dx \right] \quad \text{(} S \text{ is the support set)} \]
\[= \log |X| \]

which is the entropy of the uniform distribution.

So to conclude, among random variables taking values in \([0, 1]\) the differential entropy is maximized by \(X \sim \text{Uniform}(0, 1) \).

Gaussian distribution

Furthermore, among (unbounded) random variables with mean 0 and variance 1, the differential entropy is maximized by \(X \sim \text{Normal}(0, 1) \). In other words, for any

\(X' \) distributed arbitrarily with mean 0 and variance 1
\(X \sim \text{Normal}(0, 1) \)

\[D(X'||X) = h(X) - h(X') \geq 0 \]

The Gaussian distribution has maximum entropy.
Entropy of the Gaussian distribution

Let \(X \sim \text{Normal}(0, \sigma^2) \). Denote the pdf of \(X \) by \(\Phi(X) \) Note that \(\log \Phi(x) = a + bx^2 \). Then

\[
\begin{align*}
 h(X) &= -\int \Phi(x) \log \Phi(x) dx \\
 &= a \int \Phi(x) dx + b \int x^2 \Phi(x) dx \\
 &= a + b\sigma^2
\end{align*}
\]

AEP Theorem

If \(X_1, \ldots, X_n \) iid. \(X \) then

\[
-\frac{1}{n} \log f(X_1, \ldots, X_n) \to h(X)
\]

in probability

Typical set

\[
A^{(n)}_\epsilon = \left\{ (x_1, \ldots, x_n) : \left| -\frac{1}{n} \log f(x_1, \ldots, x_n) - h(X) \right| \leq \epsilon \right\}
\]

Also, define the “volume” of a set \(S \) as

\[
\text{Vol}(S) = \int 1_S dx_1 \ldots dx_n
\]

Then, \(\forall \delta, \epsilon > 0, \exists n_0 \) s.t. \(\forall n \geq n_0 \):

1. \(\Pr(A^{(n)}_\epsilon) \geq 1 - \delta \)
2. \(\text{Vol}(A^{(n)}_\epsilon) \leq 2^{(h(X)+\epsilon)n} \)
3. \(\text{Vol}(A^{(n)}_\epsilon) \geq (1 - \delta)2^{(h(X)-\epsilon)n} \)

Proofs

1:
\(\Pr(A^{(n)}_\epsilon) \geq 1 - \delta \). Follows from the LLN, applied to continuous random variables.

2:

\[
\begin{align*}
1 &= \int f(x_1, \ldots, x_n) dx_1 \ldots dx_n \\
&\geq \int 1_{A^{(n)}_\epsilon} f(x_1, \ldots, x_n) dx_1 \ldots dx_n \\
&\geq \int 1_{A^{(n)}_\epsilon} 2^{-(h(X)+\epsilon)n} dx_1 \ldots dx_n \\
&= 2^{-(h(X)+\epsilon)n} \cdot \text{Vol}(A^{(n)}_\epsilon)
\end{align*}
\]

\(\implies \text{Vol}(A^{(n)}_\epsilon) \leq 2^{(h(X)+\epsilon)n} \)
\[1 - \delta \leq \int 1_{A_i(n)} f(x_1, \ldots, x_n) dx_1, \ldots, dx_n \]
\[\leq \int 1_{A_i(n)} 2^{-(h(X) - \epsilon)n} dx_1, \ldots, dx_n \]
\[\implies Vol(A_i(n)) \geq (1 - \delta)2^{(h(X) - \epsilon)n} \]

Channel capacity

Now, back to the beginning. Recall our “6.441 channel”: \(Y = X + W \). Suppose \(2\epsilon = \frac{1}{k}, k \in \mathbb{Z} \). We expected the “intuitive capacity” \(\geq \log\lfloor 1 + \frac{2}{2\epsilon} \rfloor \).

Capacity

Define capacity as

\[C = \max_{f_X} \{ I(X; Y) \} \]

Note that the maximization is over all distributions subject to constraints. But this is just a definition, let’s see if it makes sense for our channel.

\[
\begin{align*}
\max_{f_X} \{ I(X; Y) \} &= \max_{f_X} \{ h(Y) - h(Y|X) \} \\
&= \max_{f_X} \{ h(Y) - h(X + W|X) \} \\
&= \max_{f_X} \{ h(Y) - h(W|X) \} \\
&= \max_{f_X} \{ h(Y) - h(W) \} \\
&\leq \log(2(1 + \epsilon)) - \log(2\epsilon) \\
&= \log \left(\frac{1}{\epsilon} + 1 \right)
\end{align*}
\]

Wish to prove: operational capacity \(\leq \) formal capacity. “Converse coding theorems” We want to find upper bound on \(R \). The sequence of actions in transmission is

Choose \(x = (x_1, \ldots, x_n) \in \text{set } M \text{ of size } 2^{nR} \)
Receiver gets \(y = (y_1, \ldots, y_n) \)
We guess \(\hat{x} = (\hat{x}_1, \ldots, \hat{x}_n) \).

So we have the Markov chain \(X \rightarrow Y \rightarrow \hat{X} \) and use Fano’s Inequality: \(H(X|Y) \leq 1 + P_e \log |M| \)

\[
\begin{align*}
I(X; Y) &= H(X) - H(X|Y) \\
&\geq H(X) - (1 + \log |M|P_e) \\
&\geq \log |M|(1 - P_e) - 1 \\
&= nR(1 - P_e) - 1
\end{align*}
\]

Note that above, we are using “discrete entropy” since \(X \) is “\(\epsilon \)-discretized”

15-5
But we also have

\[I(X; Y) = h(Y) - h(Y|X) \leq \sum_{i=1}^{n} h(y_i) - h(y_i|x_i) = \sum_{i=1}^{n} I(x_i; y_i) \leq nC \]

and combining these two inequalities, we have

\[R \leq C \]