
6.441 Transmission of Information Apr 20, 2006

Lecture 17
Lecturer: Madhu Sudan Scribe: Matt Willis and Matt Willsey

Gaussian Channels (continued)

1 Overview

In this lecture, we will continue our discussion of the All White Gaussian Noise Channel
(AWGN). In particular, we review the Coding Theorem for the AWGN as discussed last
lecture, and prove the converse to the Coding Theorem for the AWGN. Towards the end
of our discussion, we will address Parallel Gaussian Channels, which is the case when
there are n communication channels, each with independent (and possibly different) noise
characteristics. We briefly comment on the generalization of this analysis to the Colored
Gaussian Noise Model, where the noise properties of different channels may be linked,
and are no longer independent.

2 Review From Previous Lecture

A Gaussian channel, with an input alphabet, X ∈ Rn, output alphabet, Y ∈ Rn, and
subject to the power constraint is defined as follows:

Y = X + Z

Z ∼ N(0, σ2).

As discussed in the previous lecture,we impose the following power constraints to maintain
a finite capacity:

var(X) ≤ P

E[X] = 0.

Also from last lecture, we calculated the channel capacity, C, for a given input distribution
p(x) to be:

C = max
p(x)

{I(X; Y )}

=
1

2
log(2πe(P + σ2)) bits per transmission

The mutual information is maximized when X ∼ N(0, P ).

3 Coding Theorem

In this section we will prove both the coding theorem and the converse coding theorem.
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3.1 Proof of the Coding Theorem

We will begin by defining an encoding function, E, that has messages in a set of size 2Rn

and maps it to n real numbers (since we used the channel n times) as shown below:

E{1, 2, ..., 2nR} → Rn

We pick E such that it is chosen at random. In other words we will ensure that every
symbol that we transmit achieves the following distribution:

(E(m))i ∼ N(0, P − ε)

where m is the message and (E(m))i is i.i.d. over (m,i). Note that the variance of (E(m))i

is P − ε so that we do not exceed the total power of nP in n transmissions. Next we will
establish the following notation:

X denotes the transmitted sequence X = E(m)
Y denotes the received sequence Y = X + Z

We will now try to prove that if R is less than C, then the probability of error is very small.

Goal: if R < I(x; y) then Pr(error) is small

Now there are three sources of decoding error when transmitting m. Generally speaking,
the sources of error can depend on the encoding of m, the encoding of some other message
m’ (where m′ 6= m), or the error introduced by the channel which is a random variable.
The three sources of error correspond to the events below.

First let E0 be when the power of a realized encoding, E(m), is too large:

||E(m)||22 ≥ nP.

Note that that the 2 in the subscript above indicates an l2 − norm. Remembering that
Exp[(E(m))2

i ] = (P − ε), the law of large numbers tells us that the likelihood that we
exceed nP in the above equation is very small. Thus,

Pr[E0] → 0.

It is important to remember that this error is simply a violation of the power constraint.

Now let E1 be when the noise causes Z to be too large.

||Z||22 ≥ n(σ2 + ε)

Once again the law of large numbers tells us that

Pr[E1] → 0.

since Z will converge to its mean.

Thus, the previous two errors, E0 and E1, simply discusses the likelihood that random
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variables differ significantly from their expectation.

Now let E2(m
′) be defined as the event when probability of the encoding of some message,

m’, is too close to the encoding of the true message, m. In other words

||Y − E(m′)||22 ≤ n(σ2 + ε)

We claim that the probability of this event is

Pr[E2(m
′)] ≤ 2−I(X;Y )n,

which will be proved to follow from joint AEP.

Proof:

Let us consider two random variables, (X, Y ), picked jointly according to our channel
model (where X = E(m)). Now let us also consider two additional random variables,

(X̃, Ỹ ), picked jointly according to the channel model (where X̃ = E(m′)) and independent
of the first two random variables. We now consider the following two subclaims:

1. P r[X̃, Y are jointly typical] ≤ 2−I(X;Y )n

2. E2(m
′) occurs if X̃ = E(m′) and Y = Channel(E[m]) are jointly

typical.

Generally speaking, subclaim 2 states that E2 occurs when the encoding of E(m’) is
too close to E(m). Subclaim 1 then gives us Pr[E2].

Now let us draw a picture of this situation, which can be seen in Figure 1. For large

sqrt(nP)+ σ 2  ) sqrt(n σ 2  )

sqrt(nP)

X

what is recieved
        Y=X+Z

sqrt(n

Figure 1: Graphical Illustration Demonstrating E2

n, X will be located at a radius of
√

nP . A particular Y associated with a particular X
will be located within a ball of radius

√
nσ2 of X as shown in the figure. However, for

large n, most of the volume for realizable values of Y will be located around a radius of
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√
nP + nσ2, which is the outermost ring in the figure. E2 occurs when X̃ falls within a

small ball centered around X (which is the event that X̃ and Y are jointly typical).

Thus, if we pick an X̃ independent of X, the probability of that X̃ and Y are jointly
typical is roughly the volume of a small ball over the total volume of the biggest ball.

Pr[E2(m
′)] =

√
nσ2

n
/
√

n(P + σ2)
n

= [σ2/(P + σ2)]n/2

= 2−I(X;Y )n

The last equality holds since we have already shown that I(X; Y ) = log(1 + P/σ2)1/2.

The above derivation is somewhat ad-hoc; however, now we shall formally prove subclaim

1. To determine the probability that X̃ and Y are typical, we integrate the joint

probability over the jointly typical set. Since X̃ and Y are independent, we are able

to write the joint probability as the product of the marginal probabilities of X̃ and Y.

Pr[(X̃, Y ) joint typ.] =

∫
joint typ. set

P eX(X̃)PY (Y )d eXdY

≤ V ol(joint typ. set)max eX [P eX(X̃)]maxY [PY (Y )]

≤ 2h(x;y)n · 2−h(x)n · 2−h(y)n

= 2−I(X;Y )n

Note the second inequality hold since X̃ and Y are both contained in the jointly typical set

(V ol(joint typ. set) ≈ 2h(x;y)n, max eX [P eX(X̃)] ≈ 2−h(x)n, and maxY [PY (Y )] ≈ 2−h(y)n).
The above derivation formally proves subclaim 1, which is:

Pr[E2(m
′)] = 2−I(X;Y )n.

Since there are 2Rn messages,

Pr[∃ m′ s.t. E2(m
′) occurs] = 2Rn · 2−I(X;Y )n.

Therefore if R < I(X; Y ), then

Pr[∃ m′ s.t. E2(m
′) occurs] → 0,

which proves the coding theorem.

3.2 Converse to the Coding Theorem

The goal of this section is to demonstrate that the probability of error approaching zero
implies that the channel rate R is below capacity, i.e.:

perr → 0 =⇒ R ≤ C.

By assumption, for a given rate R we have an input alphabet containing messages M
where

M ∈ {1, 2, ..., 2Rn}
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as well as an encoding function E:

E : M → Xn.

Our channel is described mathematically as

Y n = Xn + Zn

We begin the proof by noting that M , Xn, and Y n form a Markov chain (M → Xn →
Y n), which allows us to apply Fano’s Inequality:

H(M |Y n) ≤ 1 + nRperr = O(n),

where O(n) → 0 as perr → 0 (this can also be seen by using the full-fledged Fano’s
Inequality, H(perr) + perr log(|Xn| − 1) ≥ H(M |Y n)). Now consider the quantity

I(M ; Y n) = H(M)−H(M |Y n) = nR−O(n)

where H(M) = nR for a uniform input distribution of messages. Due to the Markov
Chain (M → Xn → Y n), the Data Processing Inequality yields:

I(Xn; Y n) ≥ I(M ; Y n) = nR− o(n)

We make use of the fact that I(Xn; Y n) ≤
∑

i I(Xi; Yi) which can be seen from the
following steps (see Cover and Thomas for details):

I(Xn; Y n) = h(Y n)− h(Y n|Xn)

= h(Y n)− h(Zn)

≤
n∑
i

h(Yi)− h(Zn)

=
n∑
i

h(Yi)−
n∑
i

h(Zi)

=
n∑
i

I(Xi; Yi).

This substitution yields:

n∑
i

I(Xi; Yi) ≥ nR−O(n)

Let us say that the ith transmission contains power Pi, where by the power constraint,∑
i Pi ≤ nP . As we demonstrated last lecture, we can maximize each I(Xi; Yi) to be

1
2
log(1 + Pi

σ2 ) by choosing the normal distribution as input distribution. Therefore,

n∑
i

I(Xi; Yi) ≥ nR−O(n)

n∑
i

1

2
log(1 +

Pi

σ2
) ≥ nR−O(n).
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Due to symmetry, the left hand side of the equation is maximized when each Pi of equal
value. Therefore,

n∑
i

1

2
log(1 +

P

σ2
) ≥ nR−O(n)

nC ≥ nR−O(n)

C ≥ R−O(n)/n

where as explained above O(n) → 0 as perr → 0, and this proves the converse.

4 Parallel Gaussian Channels

In previous sections, we discussed the use of one AWGN channel with noise characterized
by Z = N(0, σ2). Now we consider the case of Parallel Gaussian Channels, where the
user has n such channels at his disposal. Each channel is allowed to have its own noise
characteristic (Zi = N(0, σ2

i )), which is independent from other channels. We still impose
a power constraint, but now it states that the power used over all n channels must be
limited. This is a fairly realistic model that might be used to describe a radio broadcasting
station, where each channel represents a different broadcast frequency, and each frequency
experiences a different atmospheric dispersion. In fact, we probably already have some
intuition concerning how to use a parallel channel. By way of building up an intuition
on how to use such a n channel system, consider the following two examples:

• Example 1
In this example, we have n identical channels, with σ2

1 = σ2
2 = ... = σ2

n. It is obvious
that we would want to distribute the power equally to each channel, so that Pi = P

n
.

• Example 1
In this example, σ2

1 = σ2
2 = ... = σ2

k = 1, and σ2
k+1 = ... = σ2

n = ∞. There is
no reason to put any energy into an infinitely noisy channel, as we have no way of
interpolating the input given the noisy output. Instead, we distribute the power
evenly among the first k channels.

The intuition behind these two examples suggests that the effective way to use a Gaussian
parallel channel is to weight the power distribution more heavily among the channels with
better noise characteristics.

Now, for a more formal discussion: the ith channel (where i ∈ {1, 2, ..., n}) of a Parallel
Gaussian Channel is characterized as follows:

Yi = Xi + Zi

Z = N(0, σ2
i )

For each channel with power Pi, the power constraint is:

n∑
i

Pi ≤ P
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Or, in terms of channel values:

Exp[
n∑
i

X2
i ] ≤ P

The quantity of interest, capacity C, is defined as:

C = max
p(x1,...,xn:

P
i Pi≤P

I(X1, ..., Xn; Y1, ..., Yn)

Following the analysis of last section, we recognize that each channel is maximized
(achieves channel capacity) with an input Gaussian distribution subject to the particular
channel’s power constraint, and therefore:

C ≤
n∑
i

1

2
log(1 +

Pi

σ2
i

)

The analysis leading up to this equation follows the same reasoning as the one channel
case, but now we no longer fix σ, but instead we allow each σi to vary independently of
the others. The task is to maximize the right side of the equation above subject to the
power constraint

∑n
i Pi ≤ P ,, or equivalently, to maximize the following expression:

C ≤
n∑
i

1

2
log(

Qi

σ2
i

)

Qi = Pi + σ2
i ,

subject to the constraint,
∑n

i Qi ≤ P +
∑n

i σ2
i . In either case, this is an optimization

problem subject to a power constraint; as pointed out in the text, it can be solved using
the technique of Lagrange multipliers. First, we form the appropriate Lagrange multiplier
expression:

J(P1, P2, ..., Pn) =
∑ 1

2
log(1 +

Pi

σ2
i

) + λ(
∑

i

Pi)

Then differentiate with respect to Pi:

1

2

1

Pi + σ2
i

+ λ = 0

⇒ Pi = ν − σ2
i

Where ν can be solved for by substituting the solved Pi’s into the power constraint. (It
should be noted that for physical reasons, Pi ≥ 0, and therefore you must bound each Pi

below by zero).
The preceding discussion explains the mathematics behind it, but there is a more intuitive
approach to understanding the optimization process, through the process of ”water-
filling.” In this analogy, there is a finite amount of ”water” (i.e., a limitation on the
power constraint) that can be poured into these n channels. It is desirable to put more
water into channels that are useful and have low noise characteristics, and less water
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into noisier channels that have a lower capacity. So, how do we go about distributing
the water? Refer to the Figure 10.4 in Cover and Thomas; the water will seek its own
level, and naturally pool more deeply into the lower noise channels. A nice feature of the
”water-filling” analogy is that it automatically takes into account the fact that Pi ≥ 0;
that is, if a channel is too noisy, it doesn’t get negative power, rather, it simply gets no
power at all.

5 General Colored Gaussian Channel

This section was only briefly covered in the last six minutes of lecture, but a brief summary
is given.

A general colored gaussian channel can be characterized by three parameters. These
parameters are the number of parallel channels, k, the total power constraint, P, and a
k × k covariance matrix, Kz. If the Kz is diagonal, then we are dealing with the case
explained in section 4 where the noise on each channel is independent from the noise on
every other channel. However, in general Kz is not diagonal. Thus, we would then like
to understand the capacitance of the total channel and how to relate it to the case shown
in section 4. To do this we use linear algebra to diagonalize Kz as shown below.

Kz = Q · Λ ·QT

In the above equation, QQT = I, and the diagonal matrix, Λ, is given as

Λi,j = λi,i; if i = j

0; else.

Thus we can convince ourselves that the capacity is as the capacity in the parallel gaussian
channel with independent channel noise, total power, P, and σ2

i = λi. It is important to
note that any covariance matrix can be diagonalized. Thus we can extend the colored
gaussian channel to the case explained in detail in section 4.
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