Today

1. Ncicork's Lower Bound

2. Barrington's Theorem
 (proof due to Ben-Or + Cleve)

Review

Last time: A Non-uniform Models of Computation

1. Trees with advice
2. Circuits
3. Branching Programs
4. Formulae
Resources
- # bits of advice
- advice TM. Time
- size
- depth
- width.

Counting bounds

If \(\mathcal{F} \) is a family of functions
then \(\exists f \in \mathcal{F} \) s.t.
\[
\text{size}(f) \geq \Delta \left(\frac{\log(\mathcal{F})}{\log \log(\mathcal{F})} \right).
\]
(Proof: # function of size $s \leq 2^{s \log s}$)

But: What is NP \cap \{0,1\}^n \Rightarrow \{0,1\}^n ?

Your answer here

NECPORUK'S THEOREM

\[\exists f \in \mathbb{P} \quad \text{s.t.} \quad \text{BP-size}(f) \geq \left(\frac{n}{\log n} \right)^2. \]

Proof: \text{deg} = 1:

will create function $f : \{0,1\}^k \times \{0,1\}^{n-k} \rightarrow \{0,1\}^n$.

s.t. last $n-k$ bits really specify function
on first k coordinates.

How: Example

\[f(i, \overline{X}) = X_i \quad \text{where} \]

\[\text{first } i \text{ bits signify index from } 1 \ldots 2^k \]

\[\& \quad \overline{X}_1 \ldots \overline{X}_{n-k} = 2^{k-b} \text{ bits string}. \]

\[\forall \overline{x} \neq \overline{y}, \quad f_x(\cdot) \neq f_y(\cdot) \]

where \[f_x(i) = f(i, x) . \]

Now BP for f gives BP for f_x for every x.

\[\# \text{ x's } = 2^{n-k} \leq 2^n \Rightarrow BP: \text{size}(f) \geq \lceil \frac{5 \times 3}{4} \rceil \]
\[\geq \frac{n}{\log n} \]

But this is sub-linear ... how to improve?

Idea 2: for \(S \subseteq [n] \)

\[\text{BP-size}_S(f) = \# \text{ edges labelled with literals in } S \]

Above proof actually implies

\[\text{BP-size}_{\{1,...,k\}}(f) \geq \frac{n}{\log n} \]

\[\uparrow \]

\[\log n \text{ variables} \]
Can we repeat this for other blocks.

Well ... not for same f, but different one.

\[\begin{align*}
 s_1 & \quad s_2 & \quad \ldots & \quad s_k \\
 u_1 & \quad u_2 & \quad \ldots & \quad u_k
\end{align*} \]

Function: \(\text{DISTINCT?} (x_1, \ldots, x_k, y_1, \ldots, y_k) \)

\[\text{DISTINCT?} (u_1, \ldots, u_k) = 1 \quad \text{if} \quad \forall i \neq j \quad u_i \neq u_j \]

\[= 0 \quad \text{otherwise.} \]

Claim: \(\forall i, \# \text{ functions} \)

\[\left\{ \begin{array}{c}
 f (u_i) = \text{DISTINCT}(a_1, \ldots, u_i, \ldots, a_k) \\
 a_1, \ldots, a_k
\end{array} \right\} \geq \left(\frac{2^k}{l} \right)^l \]

\(\geq \left(\frac{2^k}{l} \right)^l \)
Claim: \(\text{BP-size}_{\text{Distinct}}(D) \geq \frac{n}{\log n} \)

Claim: \(\text{BP-size}(f) \geq \sum_i \text{BP-size}_{s_i}(f) \)

Putting Claims Together: get

\[\text{BP-size (Distinctness)} \geq \ell^2 k - \ell^2 \log \ell \]

Letting \(k = 2\log \ell \) and \(N = \ell^k \)

get \(L \geq a \left(\frac{n^2}{\log^2 n} \right) \)

\(\boxed{\text{NECIPORUK}} \)
Barrington (Ben-Or + Cleve):

Motivation:
- Can we use non-uniformity to prove $P \neq L$?
- Maybe we can argue that “simple” functions don’t have small width BPs.
- But every CNF/DNF formula has width ≤ 3 BP’s of exponential size...

Really need to show that no poly-size BP exists for some function in P.

Natural candidate: $\text{MAJORITY}(x_1, \ldots, x_n) = 1$ \iff $\exists x: x \geq \frac{n}{2}$.
Barrington's Theorem:

If f has $O(n)$ width poly size BP

\Rightarrow f has log-depth formula (over any finite basis)

(other bases similar)
In above

\[f_i = 1 \text{ if top b.p. reaches } i^{th} \text{ state in middle level} \]

\[g_i = 1 \text{ if bottom b.p. accepts starting at middle level.} \]

\[\Rightarrow \text{ Much harder (unexpected)} \]

Ben Or + Cleve's proof: Simple idea.

"Strong Induction"
Register Machines

Given by l registers $R_1 - R_l$

S instructions

I_1

I_2

\vdots

I_S

I_j: of the form $R_i \leftarrow R_j + R_k \ast R_l$

or $R_i \leftarrow R_j + x \ast R_l$
Register Machine computes $f(x_1, \ldots, x_n)$ if it maps

$$(R_0, \ldots, R_e) \rightarrow (R_0, \ldots, R_{e-1}, R_e + f(), R_e)$$

Strong Hypothesis: if f has depth d

\exists $\mathrm{AND, NOT}$ formula 1st

\exists size 4^d, 3 register machine

Prop. f has size S, l-Register m/c

\Rightarrow f has size $O(S)$, 2^l width BP

(8 in our case)
Proof:

\[f \text{ computed by } M_i = \overline{I}_i \]

\[\Rightarrow (1-f) \text{ computed by } \overline{I}_s \]

\[\overline{I}_s' \]

\[\overline{I}_s' = \overline{I}_s \text{ replace + by } - \]

\[\overline{I}_{s+1} = R_e \leftarrow R_e + R_i \]

(Previously, \(R_e \) had \(R_e^0 - f R_i^0 \) & \(R_i \) \(R_i^0 \))

Now: \(R_e \leftarrow R_e^0 + (1-f) R_i^0 \)
Interesting one

\[f = f_1 \land f_2 \]

\[R_1 \]

\[R_2 \]

\[R_3 + f_1 \cdot R_1 \]

\[R_2 + f_2 R_3 + f_1 f_2 R_1 \]

\[R_3 + f R_1 \]

\[R_2 + f_2 R_3 + f_1 f_2 R_1 \]

\[R_1 \]

\[R_2 + f_2 R_3 + f_1 f_2 R_1 \]

\[R_3 \]