Today

- Bounded depth circuits: AC^0
- Parity & AC^0 (mod "Switching Lemma")
- Proof of Switching Lemma.

Warning: These notes contain only the proof of the lemma;

No statement;

No context!
Furst-Saxe-Sipser Stitching Lemma

- Let f be a DNF formula with s wires, on n inputs.

Let p be a random restriction of x_1, \ldots, x_n

\[x_i \leftarrow 0 \quad \text{w.p.} \quad \frac{1-p}{2} \]
\[x_i \leftarrow 1 \quad \text{w.p.} \quad \frac{1-p}{2} \]
\[x_i \leftarrow x_i \quad \text{w.p.} \quad p \]

- Then if $p < -\frac{f(s,n)}{\log s}$

$f_{\leq p}$ is a function of C inputs.
Proof: Do the restriction in 2 stages

First stage: $X_i \leftarrow X_i$ w.p. \sqrt{p}.

Second stage: $X_i \leftarrow X_i$ w.p. \sqrt{p}.

Claim:

- First Stage: All terms have $\leq C$ variables

- Second Stage: f depends on $\leq C$ variables
Proof of first stage Claim: (relatively easy)

\text{Case 1:} \quad \text{fanout large} \geq 2 \log s

\Pr[\text{output }= 0] \leq \left(\frac{1}{2} + \sqrt{p}\right)^2 \log s

\leq \frac{1}{5^2}

\Pr[\exists \text{ and gate with output } = 0] \leq \frac{1}{5}

\text{Case 2:} \quad \text{fanout} \leq 2 \log s

\Pr[\exists \text{ unrestricted gate}] \leq \left(2 \log s\right) \cdot \left(\frac{1}{\sqrt{p}}\right)
So if \((\sqrt{p}) \ll \frac{1}{s}\) then ---

\[c \sim \text{depends on } S \text{ vs. } \frac{1}{p}\]

if \(s = p^{-a}\) then \(c \approx 2a\).
Proof of Stage 2:

- More complicated: induction on c
 (from first stage)

- Why? Terms from first level overlap
 (share variables)

\[T_1 \lor T_2 \ldots \lor T_m \]
Case 1: Many disjoint T_i's. \(\Omega(2^{\log s}) \)

\[
\Pr \left[T_i = 1 \right] \geq \left(\frac{1}{2} - \frac{1}{\sqrt{p}} \right)^c
\]

\[
\geq \frac{1}{3}
\]

\[
\Pr \left[\forall i: T_i = 1 \right] \leq \left(1 - \frac{1}{3^c} \right)^{\Omega(3^c \log s)}
\]

\[
\leq \frac{1}{5}
\]

Case 2: (The hard, inductive, case)

Less than $3^c \log s$ disjoint T_i's

dot T_1, \ldots, T_k be maximal disjoint set.

Let \(H = \bigcup_{i=1}^k T_i \)
$[n] = H \cup X$

$[n]_p = H' \cup X'$

Want to show: $f|_p (H' \cup X')$ depends on b_c variables

Step 1: $\mid H' \mid$ is small (as in first stage)

Step 2: A assignment ρ' to H'

$f|_{\rho' \cup \rho'} (x')$ depends on few variables

Induction: every term depends on only $c - 1$ variables

\Rightarrow depends on $\leq b_{c-1}$ variables
Step 3: \(f(p_{uv}, x') \) depends on variables.

\[m_{bc} = C' + 2b_{c-1} \]