Today: Interactive Proofs

- AM
- IP
- IP ∈ PSPACE...

Classical Notion of Proof = NP

Theorem: \(T \leq E^* \)

Proof: \(\exists T \leq E^* \)

\(\exists \) proves \(T \) if \(\forall (T, \pi) = 1 \).

\(|\pi| = |T|^{O(1)} \leq V \) polytime

\(\Rightarrow \) "True-Theorem" in NP.
Interactive Proofs:

- Arise in context of cryptography;
- How do you prove X while keeping Y secret (modulo truth of X)?
- E.g. I am allowed to access account "madhu@mit.edu" without revealing my password is "blah-blah"
- Interactive proofs different from non-interactive ones.
Model

Prover \[\leftarrow \frac{Q_i}{\pi_i} \rightarrow \text{Verifier} \]

\[\leftarrow \frac{\exists_i}{\pi_i} \rightarrow \text{prob.} \]

\[\leftarrow \frac{\pi_i}{\tau_i} \rightarrow \text{poly.} \]

\[\vdash \leftarrow \frac{\pi_i}{\tau_i} \rightarrow \text{time} \]

\[\pi_i^x \rightarrow \exists_i \left(Q_i, \pi_i, \pi_i \right) \]

\[\text{L} \in \Pi \text{ if } \exists Q, V \]

\[\uparrow \rightarrow \text{prob. poly time} \quad \text{s.t.} \]

for \(Q_i = Q(x, \pi_i, \pi_i, R, i) \)

\[x \in L \Rightarrow \exists P \quad \text{s.t.} \quad V(x, \pi_i, \pi_i, R) = 1 \]

\[x \notin L \Rightarrow \forall P \quad \cdots \quad \Rightarrow \text{w.p. } - C(n) \]

\[x \notin L \Rightarrow \forall P \quad ... \quad \Rightarrow \leq C(n) \]
\[T_i = P(x, z_1, \ldots, z_i). \]

Related notion

Arthur-Merlin Proofs [Babai]

Motivation: Some number-theoretic problems don't appear NP-hard.

\(L \subseteq \text{NP} \)

\(L \) not quite in \(\text{NP} \)

but close...

Formally: \(L \in AM \) ...

Merlin \[\begin{array}{c} \rightarrow \quad z_i \quad \text{Arthur} \\
\downarrow \quad T_i \end{array} \]

\(x \in L \) ---
Historical Issues

1. Coin of Verifier public or private
 \[\uparrow\] (Am) \[\uparrow\] (IP)

 \[\text{Goldwasser - Sipser}\]: Can convert private to public.

2. Error: one-sided or two-sided

 \[\text{Goldreich Mansour ?}\]: Can assume one-sided

3. \#Rounds: Constant? \(\Rightarrow\) (Am)

 \[\text{Poly} \ ?\ (IP)\].

 \(\text{Constant} \Rightarrow \text{2 rounds}\).
\([\text{GMR}]\) \(IP \subseteq \text{PSPACE} \)

\([\text{GmW}]\) \(\text{GNI} \in IP \Rightarrow \text{GNI} \in \text{AM} \)

Complexity Classes from \(IP \)

\(\text{NP} \subseteq \text{MA} \subseteq \text{AM} \subseteq \text{IP} = \text{IP}^\text{poly} \subseteq \text{PSPACE} \).

\[\uparrow \]

prob. verifiere

Example:

\(\text{GNI} \subseteq \text{AM} \):

Merlin \((G_0, G,) \)

\[\xrightarrow{T\bar{I}(G_0)} \]

\(b' \)

Arthur

Pick \(T \), \(b \) at rand

\[\text{accept if } b' = b. \]
1. \(IP \subseteq PSPACE \).

Proof Idea:

Key Concept: Optimal Prover

- \(P^* (x, q_1, \pi_1, q_2, \pi_2, \ldots, q_i) \):

 determines "optimal" answer to

 \(q_i \), given history \(x, q_1, \pi_1 \ldots q_{i-1}, \pi_{i-1} \).

- \(P^* (x, q_1, \ldots, q_i, \pi_i) \):

 computes prob. acceptance given

 history \(x, q_1, \ldots, q_i, \pi_i \).

 using \(P^* \) for answers to future questions.
Given big computation tree of max 2 arg nodes...

Can be computed in PSPACE.

One-Sided Error? Public coins?

Easy in poly rounds [Kilian]

Idea: Assume questions binary; a random coins revealed at end;

So fixing optimal prover \(P^* \);

Verifier’s view is a tree & he wants to know how many paths accepts
\(V \) arbitrary

\(V' \) public-win

\(V' \) one-sided ...

\(N \)

\(q = 0 \)

\(N_0 \)

\(q = 1 \)

\(N_1 \)

\(V' \) wants to know how many accepting paths at root.

\(P' \): Send \(N \) to \(V' \).

also for two children.

\(V' \): picks \(q \) with prob. \(\frac{N_q}{N} \) (if \(N = N_0 + N_1 \))
Analysis: Suppose prover claims $N > N'$

Then (inductively) caught w.p. $1 - \frac{N}{N'}$

Proof: Prob. Catching

\[
= \left(1 - \frac{N_0}{N_0'}\right) \cdot \frac{N_0'}{N'}
\]

\[
+ \left(1 - \frac{N_1}{N_1'}\right) \cdot \frac{N_1'}{N'}
\]

\[
= \frac{1}{N'} \left[N_0' + N_1' - N_0 + N_1 \right]
\]

\[
= 1 - \frac{N}{N'} \quad \Box
\]

(Should verify base case...)
Harder version: \(O(1) \) rounds.

Will show it for 2 round protocol:

Step 1: Verifier picks \(R \in \{0, 1\}^r \)

: Computes \(q = q(R, x) \)

Step 2: Sends \(q \rightarrow \) prover

Prover answers with \(\Pi = \Pi(q) \)

Step 3: Accept if \(V(x, R, \Pi) = 1 \).

Want to convert this to public coin version.
1. Key Ingredient: Protocol for "approx counting"
 - Given: \(S \subseteq \{0,1,\}^* \)
 \[\text{"membership in } S \text{" } \in \text{ AM} \]
 - \(|S| \geq f(n) \) \Rightarrow \text{ accept w.p. } 1
 - \(|S| \leq \frac{f(n)}{?} \) \Rightarrow \text{ accept w.p. } \leq \frac{1}{2}

2. Use above to prove that for fixed \((q,a)\)

\[S_{q,a} = \{ R \mid q(R) = q \text{ and } \forall (x,r,a) \text{ accepts } ? \} \]

is large.
3. Can we use above to prove
\[\exists S_q, a \text{ is large.} \]

Protocol for approx. Counting

Verifier \(V' \):
\[\begin{align*}
\text{Picks } h: \{0,1\}^r \rightarrow 2 \cdot [f(n)] \\
\text{Asks for } R \text{ s.t. } & \text{ "RE S"} \\
\text{& "} h(R) = ? \text{"} \leftarrow \\
V' & \xrightarrow{h} P' \\
\end{align*} \]

\(P' \): Picks shifts \(S_{i \ldots S_t} \)
\[t = O(\log f(n)) \]
\[\leftarrow S_{i \ldots S_t} \]
\[V' \xrightarrow{y} \]

Now \(P' \) proves to \(V' \) that

\[\exists \ RES \ (\exists \ proves \ this) \]

\[h(R \oplus S_i) = y \quad \text{for some} \quad i. \]

Combine [Valiant - Vazirani] \[\cup \] [Haastenaire, Sipser]

Similar proofs yield

\[IP[k] \leq AM[O(k)] \leq AM[O(\frac{k}{c})] \]

\[AM[O(\frac{1}{c})] = AM[2] = BPE \quad \forall c. \]