Today: Average Case Complexity: Definitions.
- Distributional Problem?
- Feasible Problems?
- Intractable Ones?
- Reductions?

Based entirely on:
Oded Goldreich: Conceptual Intro To Computational Complexity Sets 10.2
Question:
- Is TSP hard on average or easy?

Answer:
- Depends who you ask!
- If we pick points uniformly from an \(n \times n \) square ... then seems easy.
- if you pick entire grid & perturb each point a bit, then seems hard.

Conclusion:
Complexity is a function of
(i) Problem &
(ii) Distribution.
Distributional Problems

Specified by a pair \((\Pi, D) \)

\[\Pi \subseteq \{0,1\}^* \times \{0,1\}^* : \text{usual relational problem} \]

\[D = \{ D_n \} : D_n : \{0,1\}^n \rightarrow [0,1] \text{ is a distribution on } \{0,1\}^n. \]

Goal: Given \(\mathcal{D} \leftarrow_D \{0,1\}^n \)

find \(y \) s.t. \((x, y) \in \Pi \).

Complexity Measure?

Expected running time? Not so interesting
Examples:

1. Suppose A solves Π on D as follows:
 - w.p. $2^{-\frac{\epsilon}{n}}$, A takes time 2^n.
 - w.p. $1 - 2^{-\frac{\epsilon}{n}}$, A takes time n^2.

 Is this "polynomial"? Exponential?

2. Suppose B solves Π' on D' as follows:
 - w.p. $\sim \frac{1}{c^2}$, B takes time n^c.

 Is this "polynomial"?
Our Preference

Avg-Time = "Time as viewed by polytime observer",

& not

"What could be sensed after unreasonable sampling"

Back to Examples:

(i) In any poly # samples, very unlikely to see exponential behavior.

⇒ Avg-Time = \(n^2 \).

(ii) For every \(c \), prob. of seeing run time \(\geq n^c \), io \(\geq \frac{1}{c^2} \).

⇒ Avg. Time = super-poly.
Formal Definition:

$\text{Avg-Timu of } A \text{ on } (\Pi, D) \text{ is } \leq T(n)$

if \(\forall n, c \)

\[\Pr \left[\begin{array}{l}
\text{A}(x) \text{ incorrect} \\
\text{x} \leftarrow_{D_n} \{0, 1^n\} \text{ or A(x) runs in time} \\
\geq T(n) \end{array} \right] \leq \frac{1}{n^c}. \]

Note: Allowing A to be incorrect makes definitions equivalent.

$\text{Avg-BPP} = \left\{ (\Pi, D) \mid \exists A, c \text{ solving (\Pi, D)} \text{ in Avg-Timu } n^c \right\}$.
Intractable Problems?

Attempt 1:

\[\text{DNP}_1 = \{ (\pi, d) \mid \pi \in \text{NP}, \text{ (i.e., "}(x,y) \in \pi?\text{" decidable in P)} \} \]

Problem

- Notion of distribution too strong, for "empirical" concerns.
- Can easily prove:

\[\text{NP} \not\equiv \text{BPP} \Rightarrow \text{DNP}_1 \not\equiv \text{Avg. BPP} \]

Worst-case hardness \(\Rightarrow\) average case hardness.
- $D_{A,n}^{\text{Adv}}$ uniform on $\frac{1}{2}x \mid A(x)$

- $D_{n}^{\text{Adv}} \leq \frac{1}{i} D_{A_i,n}^{\text{Adv}}$

$A_1, A_2, \ldots A_i, \ldots$ Enumeration of BPP w/c.

- Diagonalization by Distribution!

- Problem: Distributions worse than adversary, which avg case wants to understand "naturally-occurring instances".

- Shouldn't allow arbitrary distributions D.
Sampleable Distributions

Model of Universe

- What kind of distribution do we see?
 - "Sampleable Distribution"
Definition: \(D \) is sampleable if

\[\exists \text{ poly-time (deterministic) algorithm } g \]

\[\forall n, x \in \{0,1\}^n \]

\[\Pr_y \left[g(y) = x \right] = D(x) \]

\(y \leftarrow \text{ uniform on } \{0,1\}^n \)

Interesting Intractable Problems

\[\mathcal{DNP} = \left\{ (\Pi, D) \mid \Pi \in \mathcal{NP}, \exists D \text{ sampleable} \right\} \]
Basic Questions

- Is $\text{DNP} \leq \text{Avg. BPP}$? No.
- If $\text{NP} \cap \text{BPP}$ then, Yes, but is $\text{DNP} \cup \text{Avg. BPP}$? Can't prove.
- Find some "worst-case assumption" that implies $\text{DNP} \\cup \text{Avg. BPP}$.
- What are some DNP-complete problems?
- What is completeness? reductions?
Replacements

- **Deterministic**: Simple ... should help solve original problem.

- **Probabilistic**: Already get complex ... needn't always be correct.

- **Distributional**: Trickier ... can be incorrect; can produce unlikely instances.
More formally

Most restrictive notion:

- (Deterministic Reduction): \((R, T)\) reduce

\[(\Pi_1, D_1) \rightarrow (\Pi_2, D_2)\]

if

(i) \(R, T\) are polytime.

(ii) \((R(x), y) \in \Pi_2\)

\[\Rightarrow (x, T(y)) \in \Pi_1\]

(iii) \(R(x)\) distributed as \(D_2\)

if \(x\) distributed as \(D_1\).
But don't need to adhere to distribution so stringently.

- Alg for Π_2 doesn't "know" D_2.

- Domination of Distributions

- $D_2 \alpha$-dominates D_1 if

 \[\forall x \quad D_1(x) \leq \alpha(D_1(x), D_2(x)). \]

 (Pictorially)
(Weaker def. reduction)

\[(\Pi_1, D_1) \rightarrow (\Pi_2, D_2) \]

\[a \xrightarrow{R} R(x) \]

\[T(y) \xleftarrow{T} y \]

\[a \leftarrow D_1 \rightarrow R(x) \text{ drawn from } D_2' \]

\[\text{s.t. } D_2 \text{ poly. dominates } D_2' \]

Claim: Such a reduction \((\Pi_2, D_2) \in \text{Avg.\ BPP} \)

\[\Rightarrow (\Pi_1, D_1) \in \text{Avg.\ BPP} \]
Can also consider randomized...

- Definition simpler.
- Will see example next lecture.