
6.841 Advanced Complexity Theory Feb 20, 2007

Lecture 4

Lecturer: Madhu Sudan Scribe: Katherine Lai

1 Overview

In this lecture, we look at some lower bounds concerning the non-uniform forms
of computation we discussed last time.

• Neciporuk’s Theorem (f ∈ P with BP size Ω((n
log n

)2))

• Barrington Construction of Small-Width BPs

2 Previous Lecture

In the previous lecture, we discussed non-uniform forms of computation and
their complexity measures.
Nonuniform computation # bits of advice time size width depth
TM with advice x x
Circuits x x
Branching Programs (BPs) x x
Formulae x x

We try to study these forms of computation to try to see what you can and
can’t solve with them, and in doing so divide up logspace and other classes.

3 Counting Technique

Before we discuss Neciporuk’s theorem, we define the counting technique, which
we will find useful.

Technique 1 Let F ⊆ {f : {0, 1}n → {0, 1}}. Then ∃f ∈ F s.t. size(f) ≥

Ω
(

log|F|
log log |F|

)

.

We can use this technique to count the number of functions circuits of a particu-
lar size can calculate. If we have circuits with size at most s, they can calculate
|F| ≤ 2s log s.

However, if we wanted to use only this technique to prove anything mean-
ingful about NP, it’s never going to really work. NP is an infinite family of
functions. For this concept to make sense, we would need to look at the first
constant number of functions in NP, and we don’t get anywhere if we use count-
ing to find one function in NP. We will, however, see how we can get lower
bounds with counting anyway.

4-1

4 Neciporuk’s Theorem

With Neciporuk’s Theorem, we get a lower bound on the size of BP that calcu-
lates a function in P. First, we define the function.

Definition 2 Let f : {0, 1}k × {0, 1}n−k → {0, 1}, with fx(i) = f(i, x).

The question at hand is, how many different fx do we get? If all fx’s are
different, can we say anything about size(f)? We want to find out what the
smallest circuit or BP we would need for this f . The key idea is if we have a
circuit for f , we have a circuit for fx–we just hardcode x into the circuit. This
doesn’t increase the size of the circuit. If all fx are different, we have

F = {fx} with |F| ≥ 2n−k

size(f) ≥
n− k

log(n− k)
= Ω

(

n

log n

)

This result is unfortunately sublinear, so it doesn’t tell us much yet.
To construct F with a different fx for every x, we do the following. We set

f(i, x) = xi, where x is the truth table where x = x1 . . . xn−k, provided that
2k ≥ n− k.

4.1 A superlinear lower bound

We want to find a superlinear lower bound, and to do this we have to restrict
ourselves to only using BPs. We also need a metric for the size of the BP.

Definition 3 Let BPSIZEi(B) be the number of times the literal xi or its
complement appears in the branching program B.

In the case of branching programs, we actually have a big advantage. Take
subset S ⊆ 1 . . . n BPSIZES(B) = # edges labelled by literals of S in the
branching program B. To get a BP for fx from one for f , we simply fix the
literals and shortcircuit some of the edges and erase other ones.

If f is a function on n variables and S1, S2 . . . Sl is a partition of the set
{1 . . . n}, then BPSIZE(f) ≥

∑l

i=1 BPSIZESi
(f)

Definition 4 Let the function Distinct? be defined as

Distinct?(x11 . . . x1k, x21 . . . x2k, . . . , xl1 . . . xlk) =

{

1 if ∀j 6= k, ij 6= ik
0 otherwise

with n = lk.

We would like to try to relate the lower bound to the number of bits. Take
any block of variables. If we restrict the remaining variables, we get many

different functions. There are 2k(l−1)

ways to choose them all different for every

4-2

set T ⊆ {1 . . . 2k} with T = i2 < i3 < i4 . . . il. From T , we can create the
function

fT (i1) =

{

1 if i1 6∈ T− > f1(i1) = f(i1, i2, ...il)
0 if i1 ∈ T

The number of functions on S1 is at least
(

2k

l − 1

)

≈

(

2k

l

)

≥

(

2k

l

)l

This is actually true for any Si, so we get, by picking k ≥ 2 log l,

BPSIZESi
(f) ≥

log(2k/l)l

log log(2k/l)l

≥
kl − l log l

log(kl)

≥ Ω

(

n

log n

)

Using the result from before, we have a total size

BPSIZE(f) ≥
l

∑

i=1

BPSIZESi
(f)

≥ l ·
n

log n
= Ω

(

n

log n

n

log n

)

and we achieve the desired superlinear lower bound. This may come in useful
when we try to separate NP from NL or other complexity classes.

In the next lecture, we’ll see different examples of restricting other values.

5 Barrington Construction of Small width BPs

5.1 Background

Roughly at stage of Neciporuk’s Theorem, people were trying to separate NP
from P or NL. Some thought that maybe looking at not just size, but size and
width simultaneously, they would get some result. They hoped the following
would be true.

Proposition 5 If f ∈ P needs large width branching programs (super polyno-
mial), then P 6= L.

The problem with this, however, is whether we can prove super polynomial
large widths. Given any DNF formula, it is trivial to construct a BP for it
with only three branches. For example, if we have the DNF formula x1x2x3 ∨
x̄1x3x4 ∨ x2x̄3x5, the BP can sequentially try every term and branch between
two of the branches, exiting to the third branch if it is clear that the whole
formula will be satisfied already. Since any formula for f ∈ P can reduce to a
DNF formula, no f needs super polynomial width. This leads to the next idea.

4-3

Proposition 6 If ∃f ∈ P that needs large branching programs– super polyno-
mial width or super polynomial size then P 6= L.

This turns out to be true, but we still don’t know how to prove super poly-
nomial size. We will instead pursue a weaker goal: we will try to find f ∈ P that
requires super constant width or super polynomial size. (This doesn’t actually
prove anything.)

Proposition 7 The function

Majority(x1 . . . xn) =

{

1 if
∑

xi ≥ n/2
0 otherwise

requires super constant width if the size is polynomial.

Theorem 8 Barrington’s Theorem: Let f be a function that has a depth d
formula over {binary AND, NOT}. Then f has a BP of width 5 (we will prove
8 today) and depth 4d. It has a log-depth formula, so it has a polynomial-sized
BP.

5.2 Register Machine

To prove Barrington’s theorem, we will be using a register machine [Ben-Or,Cleve].
A register machine consists of l registers, R1, . . . , Rl, each of which stores one
bit. The register machine is fed a set of instructions I1, . . . , IS that describe
how to update the registers. For example, I2 might be R1 ← R2 + xi ·R3. The
end result is then some linear combination of the registers.

If a register machine takes (R1 . . . Rl)→ (R1 . . . R(l−1), Rl+f(x1 . . . xn)·R1),
then this machine is said to compute f . This can be done by setting the registers
to (1, 0, . . . , 0) initially. This leaves the first l − 1 registers the same and the
answer in Rl.

Fact 9 If an l-register machine of size S computes f , then ∃BP of width 2l

and size O(S).

The width comes from needing to remember all registers, of which must have
at least 2l states. To prove the BP of width 8, we will thus need a 3-register
machine.

5.3 Ben-Or Cleve Induction

If f has depth d formula over {binary NOT, AND}, then f is computed in size
4d by a 3-register machine.

To calculate NOT, or ¬f1 for some f1, we use the following register machine.
The instructions are:

I1: R3 ← R3 + f1R1

I2: R3 ← R3 + R1

4-4

Figure 1: Diagram of a BP used for a NOT operation

Figure 2: Diagram of a BP used for an AND operation

which leaves the first two registers unchanged, and changes R3 to contain the
value r3 + (1 + f1)r1, where r1 and r3 are the initial values in registers R1 and
R3 respectively. We can then obtain the value ¬f1 from the result in R3.

To calculate AND between f1 and f2, it is somewhat more complicated. We
use the following instructions for the register machine:

I1: R3 ← R3 + f1R1

I2: R2 ← R2 + f2(R3 + f1 ·R1)
I3: R3 ← R3 + f1R1

I4: R2 ← R2 + f2R3

If we let the initial values in the registers be r1, r2, and r3, we see that I3 had
the effect of restoring R3 to its original value r3, and I4 cancelled out the f2r3

term, so that in the end, R2 contained r2 + f1f2r1.

4-5

5.4 Conclusions

At the end of Barrington’s results, there were many objects coming together
and looking identical–log-depth circuits, formulas, polynomial size and bounded
width BPs, and so on. Counting has not worked to show if circuits and formulae
are different. In actuality, the conjecture mentioned earlier is false. We know
functions that require super polynomial size, but they’re not in PSPACE, and
the question is how far away that is. Relatedly, the complexity class “Nick’s
class” NCi is for circuits of depth logi n, and it is named after Nick Pippenger.

4-6

