
6.841 Advanced Complexity Theory Feb 26, 2007

Lecture 6
Lecturer: Madhu Sudan Scribe: David Glasser

Today’s lecture is an alternate proof that Parity is not in AC0, as shown by Smolensky.
Recall: AC0 has polynomially-sized circuits of constant depth, with unlimited fan-in ANDs and ORs.

Argument is roughly that parity is complex, whereas AC0 is simple. This is a more algebraic argument than
last time.

What measure of complexity can we use to make this argument? The degree of the polynomial which
computes the function. What field is this polynomial in? The obvious candidate is F2. Then we can have a
polynomial on n variables. This doesn’t work too well: AND ends up being hard (x1x2 · · ·xn has degree n)
and parity is simple (x1 + · · · + xn) has degree 1. That’s backwards! Instead, we’ll use any other field, or
specifically any field of characteristic not equal to 2.

There is a fundamental trick of complexity theory: instead of writing about 0 and 1, we write about 1
and −1. We can map between this with 1− 2x or 1−y

2 . Or (−1)b. Now, parity is a sum of things in the 0/1
representation, but in the other representation, it’s about a product/power, which is more complicated.

We claim that if p: Fn → F computes the parity of its input when the inputs are 0 or 1, then a polynomial
q defined as 1− 2p

(
1−y1

2 , . . . , 1−yn

2

)
compute the product of the variables y when each yi is ±1. Exercise for

the reader: show that p and q have the same degree.
We can use this to prove that the degree of p must be at least n, since we can show (apparently) that

a product polynomial must actually contain a y1 · · · yn term. I’m not sure why, but we’re going to prove
something stronger today I think.

OK, so we’ve made parity complicated. Can we make AND easy? This is why this is the Razborov-
Smolensky theorem: this is Razborov’s part. It is the method of approximations. There’s some fuzziness
involved. The idea is that we have a function that is almost the same as whatever you’re actually trying to
model.

Lemma: If C is an AC0 circuit of depth d and size s, then for all ε, there exists a S ⊆ {0, 1}n and
a polynomial p(x1, . . . , xn) of degree D such that for all x ∈ S, p(x) = C(x) and D ≤

(
log s

ε

)d and
|S| ≥ (1− ε)2n.

Smolensky idea: fix an input, and replace gates probabilistically. Here’s a lemma towards this: There
exists a distribution of polynomials p of degree k = O

(
log s

ε

)
such that for all y1, y2, . . . , yn, Pr[p(Y) =

OR(Y)] ≥ 1− exp(−k), where the probability is over the polynomials.
Exact OR is defined via De Morgan as 1−

∏
(1− yi), but this has degree n: ewww. We’d like low-degree

almost-ORs. How does this work? We’ll define Probably − OR(y1, . . . , ym) by picking α1 through αm at
random from F and look at

∑
αiyi. If the inputs are all 0, then (like OR) the output is zero.

DeMillo-Lipton-Schwartz-Zippel Lemma: If p: Fn → F is a nonzero polynomial of degree d, then Prx∈Sn [p(x) =
0] ≤ d

|S| . This is basically just a matter of counting zeros; we can get it by induction on the number of
variables.

How do we apply this? Consider the polynomial p(αi) =
∑

αiyi (so the αi are the variables). So when
the yi are not all zero, the probability that the output is nonzero is at least 1 − 1

F . If we use F3, this is 2
3 ,

and it only gets better. We might want to raise this to |F| − 1 to make the answer always 0 or 1; so it ends
up having degree 2 (for F3). So this gives us a weak probabilistic OR.

How about a stronger one? Pick α(1), α(2), . . . , α(k) from Fm independently. We’ll let probabilistic OR

be the EXACT-OR of the elements
(∑

α
(j)
i yi

)2

. So this will have degree 2k to compute the OR of m things,
where k is not a function of m.

Given a circuit, we can replace NOT gates by a degree-1 polynomial; we can DeMorganize AND gates;
and we can replace OR gates with this probabilistic OR polynomial. Thus we prove a lemma: given a circuit
C of size S and depth d and some ε > 0, there exists a distribution of polynomials p of degree at most(
log s

ε

)d such that for every x ∈ {0, 1}n, Prp[p(x) = C(x)] ≥ 1 − ε. i.e., with a fixed input and picking
polynomials randomly, we do well. Each OR gates gives degree k, so by the top of the circuit, it’s kd. For

6-1

this input, we can choose k large enough to shrink the error, and it gives us the value of k around log s
ε , I

suppose.
Now, how do we prove our original lemma, which is about varying inputs? Basically by choosing the set

S to be the ones where the lemma we just “proved” holds. So we’ve shown that AC0 is simple, basically;
now we need to show that parity isn’t.

Our new lemma: parity cannot be approximated by low-degree polynomials. So we’ll prove that if
|T | ≥ (1 − ε)2n and T ⊆ {−1, 1}n, and p is a polynomial of degree D such that p computes the product of
its inputs for all Y ∈ T , then D ≥ Ω

((
1
2 − ε

)√
n
)
. How do we show this?

Consider all functions mapping T into F3. There are 3|T | such functions. All of these are polynomials of
degree at most 2 in each variable. Consider q(y1, . . . , yn) =

∑
d cd

∏
i ydi

i . Because we only care about the
behavior when yi = ±1, then we can assume that each di is either 0 or 1 (since y2

i = 1).
Consider the product y1y2 · · · y 3n

4
; it is equal to y1y2 · · · y 3n

4
y2

3n
4 +1

· · · y2
n = (

∏
yi)(

∏
i> 3n

4
yi). But this is

equal to p(Y)(
∏

i> 3n
4

yi); so the degree is now n
4 + D. In fact, for the general case of a function, we can get

that
∑

di is at most n
2 + D. So if this p exists, then all the functions have polynomials of degree at most

n
2 + D. How may ways can you write these polynomials?

∑n
2 +D
i=0

(
n
i

)
≤

∑n
2
i=0

(
n
i

)
+ D

(
n
n
2

)
≤ 2n−1 + D2n.

There aren’t enough polynomials! So, more or less, this shows that the theorem holds. (In fact, even given
gates to calculate parity mod 3, it’s hard to calculate mod 2.)

6-2

