
6.841 Advanced Complexity Theory Mar 14, 2007

Lecture 11
Lecturer: Madhu Sudan Scribe: Tim Abbott

1 Overview

This lecture describes BPP amplification, shows BPP ⊂ P /poly, and shows
that BPP is contained within the polynomial hierarchy. Finally, we have an
introductory discussion of randomized rounding for unique SAT.

2 BPP Amplification

Definition 1 A language L is in Strong BPP if for any polynomial q(n), there
exists a polynomial time machine M(·, ·) such that for any x ∈ {0, 1}n, we have
that either x ∈ L and

Pry [M(x, y)accepts] ≥ 1− 2−q(n)

or x 6∈ L and
Pry [M(x, y)accepts] ≤ 2−q(n)

Remark In this discussion, we will consider a machine polynomial time if
its time is polynomial in the length of the first argument. The part of the
second argument (the random bits) that the machine can ever examine will
consequently be polynomial in the length of the first argument, so we can assume
that it is polynomial in the size of the first argument.

Definition 2 A language L is in Weak BPP if there exists a polynomial time
machine M(·, ·), a polynomial p(n), and a polynomial time computeable function
s(n), such that for any x ∈ {0, 1}n, we have that either x ∈ L and

Pry [M(x, y)accepts] ≥ s(n) +
1

p(n)

or x 6∈ L and
Pry [M(x, y)accepts] ≤ s(n)

Theorem 3 (Amplification Theorem) Strong BPP = Weak BPP

Proof Clearly, Strong BPP is contained in Weak BPP, so we must show that
Weak BPP is contained in Strong BPP. Suppose L is in Weak BPP, and fix a
polynomial q(n). We have a polynomial p(n), machine M , and polynomial time

11-1

computeable function s(n) satisfying the weak BPP property. We will define
an algorithm M ′ as follows. Pick y1, . . . , yt independently and identically from
the distribution of possible random inputs for M , and for each yi, compute
zi = M(x, yi). Let z =

Pn
i=1 zi

t . Then M ′ accepts if and only if z ≥ s(n)+ 1
2p(n) .

We will seperate out the two cases x ∈ L and x 6∈ L.
We will need to use the Chernoff Bound:

Theorem 4 (Chernoff Bound = Tail Inequality = Hoeffding Bound)
Suppose z1, . . . , zt are bounded (say in [0, 1]), and are independently and iden-
tically distributed, with mean µ. Then

Pr [|z − µ| ≥ ε] ≤ e−Ω(ε2t)

Remark There are cases in which one can strengthen this bound, but we
won’t be needing the stronger versions.

Suppose now that x ∈ L. The yi’s are independent and identically dis-
tributed with µ ≥ s(n) + 1

p(n) . By the Chernoff Bound, with ε = 1
2p(n) and

µ ≥ s(n) + 1
p(n) , we have that

Pr [M’ accepts x ∈ L] = Pr

[
z ≥ 1

2p(n)
+ s(n)

]
≤ Pr

[
|z − µ| ≥ 1

2p(n)

]
≤ e−Ω(t/p(n)2)

For t = Ω(p(n)2q(n)), we see that for x ∈ L, the Strong BPP condition holds.
The argument is similar for x 6∈ L, so the Strong BPP conditions holds for

x 6∈ L as well. Thus Weak BPP equals Strong BPP, as desired.

Remark Note the quadratic dependence on p(n). This procedure of convert-
ing a Weak BPP algorithm to a Strong BPP algorithm costs a lot of randomness,
and time, though of course they both remain polynomial in the input size.

3 BPP ⊂ P /poly

Corollary 5 (Adleman) BPP ⊂ P /poly

Proof It suffices to show that Strong BPP is contained in P /poly. Let
L ∈ BPP. Pick as our polynomial q(n) = 2n. Then M accepts L with er-
ror probability 2−2n. Suppose M(x, y) is a machine with input x and random
bits y. We say that y is wrong advice for x if M(x, y) 6= L(x). Then

Pry [y is wrong for x] ≤ 2−2n

Using the fact that there are at most 2n values of x of length n, we have by the
Union Bound that

Pry [There exists an x such that y is wrong for x] ≤ 2n ∗ 2−2n = 2−n

11-2

Since this probability is less than 1, there exists some y such that y is wrong for
no x, i.e. there exists a y such that M(x, y) = L(x) for all x of length n. Using
this y as the advice, we have that L ∈ P /poly, as desired.

Remark Since BPP ⊂ P /poly, if we had that NP ⊂ BPP, we would then
have that NP ⊂ P /poly. But NP ⊂ P /poly implies that the polynomial hierarchy
collapses, which we think is quite unlikely. Thus, this corollary suggests that
np 6⊂ BPP, or that nondeterministic polynomial time is more powerful than
randomized polynomial time.

4 BPP ⊂ ΣP
2

Theorem 6 (Sipser, Lautemann) BPP is contained in the polynomial hier-
archy. In particular, BPP ⊂

∑P
2

Proof In ΣP
2 , we have a short interaction between the prosecution, who is

trying to show that x ∈ L, and the defense, who is trying to show that x 6∈ L.
First, the prosecution sends a message to the defense, and then the defense sends
a reply. The jury, who sees both messages, must then decide in polynomial time
whether or not x is in L.

Suppose L ∈ BPP. Then we have M , which uses l random bits, and has
error probability 2−q(n) for some polynomial q(n). Suppose x is an input for L.
Let us iterate through a few ideas for how to do this proof.

Idea 1. The prosecution sends y ∈ {0, 1}l, and the jury accepts if M(x, y) does.
But since BPP has false positives, the prosecution could do this for x 6∈ L,
and this idea doesn’t work.

Idea 2. The defense sends y ∈ {0, 1}l, and the jury rejects if M(x, y) does. But
since BPP has false negatives, the prosecution could do this for x ∈ L,
and this idea doesn’t work.

Idea 3. The defense sends most of the bits of y, and the prosecution picks the rest.
Since if x ∈ L, most values of y cause M to accept, the prosecution should
be able to succeed, while if x 6∈ L, most values of y cause M to reject,
so the defense should be able to pick his bits of y such that no choice on
the prosecution’s part causes M to accept. This is on the right track, but
requires the defense to pick first, and isn’t yet a protocol.

Idea 4. The prosecution picks a list y1, . . . , yk, and then the defense picks some y.
The jury then considers y ⊕ yi, for each yi, and if M(y ⊕ yi) accepts for
any i, then the jury accepts, otherwise it rejects.

11-3

We will use the algorithm of Idea 4. First, suppose x ∈ L. We say that yi

is wrong for y if M(x, y ⊕ yi) rejects. Then using the Strong BPP property, for
any y,

Pryi [yi is wrong for y] ≤ 2−q(n) ≤ 1
2
.

If the yi’s are picked independently at random, then

Pry1,...,yk
[yi is wrong for y for all i] ≤ 2−k

Thus, by the union bound, we have that

Pry1,...,yk
[There exists y such that for all i, yi is wrong for y] ≤ 2l−k

Thus if we pick k > l, then for any y, there must exist some set of yi’s that are
not all wrong for y. The prosecution can then pick these yi’s, and regardless of
what y the defense picks, the jury will decide that x ∈ L, as desired.

Suppose, then, that x 6∈ L. Here we say that y is wrong for yi if M(x, y⊕ yi

accepts. Fix q(n) = n, so that k and l are both polynomial in n. Then we have
that

Pry [y is wrong for yi] ≤ 2−q(n) ≤ 2−n

Then by the union bound,

Pry [There exists i such that y is wrong for yi] ≤ k2−n = poly(n)2−n < 1

Thus, there must exist some choice of y for which no i exists where y is wrong
for yi. Thus the defense can pick this y, and the jury will find that M(x, y⊕ yi)
rejects for each i, and thus will reject x, as desired. We have thus shown that
BPP ⊂ ΣP

2 .

5 Randomized Reductions

Randomization can help prove results in complexity theory that on their face,
have nothing to do with randomness. Such reductions are called randomized
reductions. Our first example will be in constructing one-way permutations. We
know that if P = NP, modern cryptography doesn’t work. But what if P 6= NP?
We don’t know how to show that this implies modern cryptography is strong.

Definition 7 f : {0, 1}n → {0, 1}n is a one-way permutation if f is a bijection
and f(x) is easy to compute from x, yet x is hard to compute from f(x).

For cryptography, we’d like to know that for a random x, the one-way per-
mutation is hard to invert. Here, we will only show that there exist x for which
the one-way permutation is hrad to invert.

Consider the following idea for constructing a one-way permutation, given
that P 6= NP. Given (φ, x) such that φ(x) = 1, where φ is a CNF formula, we

11-4

send it to φ. It is easy to compute φ from (φ, x). But the opposite, computing
(φ, x), given only φ, requires solving satisfiability. Unfortunately, this mapping
is not one-to-one, so it is not a one-way permutation (it is instead a one-way
function). So, if we had a φ that was an element of Unique-SAT, the problem of
finding a satisfying assignment when we know that there is a unique solution,
and Unique-SAT was NP-hard, then we could use such a φ, and we’d be done.
So, we must study the Unique-SAT problem: Given a formula φ that has a
unique satisfying assignment, does there exist an efficient algorithm to find it?

Theorem 8 (Valiant, Vazirani) Unique-SAT is hard.

In this lecture, we will just sketch the proof, which will be given formally next
time. We will use a randomized reduction to convert an instance of SAT into
an instance of a promise problem related to Unique-SAT. It will send:

• SAT → Unique-SAT

• φ→ ψ, probabilistically.

• φ ∈ SAT → ψ that has a unique satisfying assignment, with probability
1

p(n) .

• φ 6∈ SAT → ψ with not satisfying assignment, with probability 1.

Since φ is satisfiable, it has for some 1 ≤ m ≤ n, between 2m−1 and 2m

satisfying assignments. We will guess m (costing at most polynomial probability
of success, since there are only n distinct possibly values of m), and do the
following. Let h : {0, 1}n → {0, 1}m. We will define ψ(x) = 1 if and only if both
φ(x) = 1 and h(x) = 0m. We hope that with probability bounded below by 1

p(n) ,
this will give us a formula ψ that has a unique satisfying assignment, but is still
hard. Thus, we need h to be both efficiently computeable, and “random”. These
cannot be simulataneously true, so we’ll have to do some sort of compromise.
In the next lecture, we will formalize this notion.

11-5

