
6.841 Advanced Complexity Theory May 2, 2007

Lecture 22
Lecturer: Madhu Sudan Scribe: Jelani Nelson

1 Overview

This lecture describes a natural DNP-complete problem first proposed by Impagliazzo and Levin [1].

2 Universal Problems for DNP

We begin by recalling the definition of the complexity class DNP (Distributional NP) from last lecture.

Definition 1 DNP is the class of languages (π,D) where π is an efficiently computable function specifying
an NP language (given an input x find a poly-size witness y such that π(x, y) = 1), and D is a poly-time
sampleable distribution. That is, there is a uniform poly-time algorithm G such that G({0, 1}n) ⊆ {0, 1}n,
and an input x of length n is drawn according to the distribution G(Un), i.e. if Dn is the distribution on
length-n inputs specified by D then Dn = G(Un). Here Un is the uniform distribution on {0, 1}n.

A reduction from a DNP language A to a DNP language B using randomized reductions R, T is said
to succeed on an input x if the random variable R(x) is distributed according to D2, and for the y found
serving as a witness to R(x) the string T (x,R(x), y) serves as a witness to x. If we have an R, T that succeed
with probability at least 1/poly(n) for each x then we have a valid reduction from A to B.

Now consider a universal language πuniv such that πuniv((M,x′), y) = 1 iff M(x′, y) = 1 where M is the
Turing-machine description of a poly-time computable function. Then we can reduce a DNP language (π,D)
to (πuniv, D′) where D′ has the same distribution over x as D and chooses the machine M according to some
probability distribution such that each machine gets picked with constant probability (e.g. the ith machine
is chosen with probability 2−i). We do not get a single DNP-complete language since D′ differs based on
the language we are reducing from, but we do get a single language that all DNP-problems with distribution
D reduce to. Impagliazzo and Levin showed in [1] that for every language (π,D) there is a language (π̃, U)
that (π,D) reduces to, where U is the uniform distribution. By composing the universal language reduction
with their reduction, we get that (πuniv, U) is DNP-complete. The rest of this lecture describes the proof of
their result.

3 A Special Case of [Impagliazzo, Levin]

Recall that for a language (π,D) there is a uniform poly-time algorithm G for sampling from D. If G were
1-to-1 then D = U , so (π,D) reduces to (πuniv, U). Now we discuss the case where G is 2`-to-1 and we know
`. The idea for dealing with this case is to reduce it to the 1-to-1 case.

We use pairwise independent hashing. If G is 2`-to-1 then its image size is 2n−`. We pick a ran-
dom pairwise independent hash function h from {0, 1}n to {0, 1}n−`+2 (the reason for the “2” will become
clear later) and hope that we have no collisions. Our input to the new problem π̃ will be (h, h(x)) where
π̃((h, z), (s, y)) = 1 iff h(G(s)) = z and π(G(s), y) = 1. To map the witness (s, y) back to our original
problem π, we set T (x, s, y) = y if x = G(s) (i.e. a witness for π̃ was not found for some x′ 6= x that collided
with x under h); otherwise we label our attempt at a reduction as a failure.

To bound the success of our reduction, we first need the following claim.

Claim 2 Pr[∀x′ ∈ G({0, 1}n)− {x}, h(x′) 6= h(x)] ≥ 3/4.

Proof Fix x′ 6= x. Since h is pairwise independent we have Pr[h(x′) = h(x)] ≤ 1/|range(h)|, so by the union
bound we have Pr[∃x′ ∈ G({0, 1}n)− {x}, h(x′) = h(x)] ≤ |G({0, 1}n)|/|range(h)| = 2n−`/2n−`+2 = 1/4.

22-1

Now to analyze the probability of success of our reduction, let E be the event that (h, h(x)) uniquely
specifies x. By Claim 2 Pr[E] ≥ 3/4. If π̃ is easy, then there is some AvgBPP algorithm A that fails to find
a witness on a negligible fraction of (h, z) pairs (where (h, z) is drawn under the uniform distribution). Let
B be this set of (h, z) pairs where A fails so that Prh,z[(h, z) ∈ B] = δ is negligible. Then we have

Prx∈G({0,1}n),h [(h, h(x)) ∈ B] ≤ Prx,h [(h, h(x)) ∈ B|E] · Pr[E] + Pr [¬E] (1)
= Prh,z[(h, z) ∈ B|E] · Pr[E] + Pr[¬E] (2)

≤ Prh,z[(h, z) ∈ B]
Pr[E]

· Pr[E] + Pr[¬E] (3)

≤ δ + 1/4 (4)

Line (2) follows from (1) since the event E occurring implies z uniquely specifies x.
Now the probability that our reductions fails to work is at most

Prh[h(x) does not uniquely specify x] +Prx,h[(h, h(x)) ∈ B] by the union bound. By Claim 2 and the above
analysis, this quantity is at most 1/4 + (δ + 1/4) = 1/2 + δ, which is at least 1/poly(n), and thus (π,D)
reduces to (π̃, U).

4 The General Case

In the previous section we assumed that G was 2`-to-1 and that we knew `. In reality G can be any function
from {0, 1}n to {0, 1}n, and there might not even be an “`” to know! The idea of [1] to overcome this obstacle
might be reminiscent of the protocol of Goldwasser and Sipser [2] for approximating the size of a set.

We do the following upon being given an input x for (π,D):

1. Guess ` ∈ [0, n] at random. In the analysis, you should think about “the right `” to guess being the `
such that there are approximately 2n−` other y’s such that |G−1(x)| ≈ |G−1(y)| (within a factor of 2).

2. Guess k ∈ [0, n] at random such that |{s|G(s) = x}| ≈ 2k (again, within a factor of 2).

3. Pick a random pairwise independent hash function h : {0, 1}n → {0, 1}n−`+O(1).

4. Pick a random pairwise independent hash function h̃ : {0, 1}n → {0, 1}k+O(1).

5. Pick w ∈ {0, 1}k uniformly at random.

Now the input of our reduction to π̃ is (k, `, h, h(x), h̃, w). Our new language (π̃, U) will be such that
π̃((h, z, h̃, w), (s, y)) = 1 iff h(G(s)) = z, π(G(s), y) = 1, and h̃(s) = w. We then transform a witness (s, y)
for π̃ to a witness for π by outputting y if G(s) = x and labeling our reduction attempt a failure otherwise.

The analysis of the general case conditions on h, z, h̃, and w uniquely specifying s then proceeds as in
Section 3. We omit the details, but it can be shown that s being specified uniquely happens with non-
negligible probability (with probability at least Ω(1/n2) — essentially guessing k, ` is the limiting factor).

This completes the proof that (πuniv, U) is DNP-complete. We glossed over one detail and that is how to
represent the (M,x), the inputs to πuniv, as single strings. This can be done by writing x′ = (〈M〉, x) where
〈M〉 is a prefix-free encoding of the description of the machine M . A prefix-free encoding is a mapping from
integers to {0, 1}∗ such that no encoding of one integer is a prefix of the encoding of another integer. A simple
such encoding is to map the integer represented in binary as b1b2 . . . bk to the string b1b1b2b2 . . . bk−1bk−1bkbk.

References

[1] Russell Impagliazzo, Leonid A. Levin. No Better Ways to Generate Hard NP Instances than Picking
Uniformly at Random. In Proc. 31st Annual Symp. on Foundations of Computer Science (FOCS), pages
812–821, 1990.

[2] Shafi Goldwasser, Michael Sipser. Private Coins versus Public Coins in Interactive Proof Systems. In
Proc. 18th Annual ACM Symp. on Theory of Computing (STOC), pages 59–68, 1986.

22-2

