Today

Locally Decodable Codes

- Definition / Motivation
- LDGs via multiv. polynomials
- LDGs via multiplicities
- LDG from matching vectors (matching vector construction)
Definition

\(l \)-LDC: maps \(\Sigma^k \rightarrow \Sigma^n \)

Corrects \(\epsilon \)-fraction error \(l \) locally

i.e., given oracle access to \(y \) s.t.

\(\exists m \text{ s.t. } \Delta(y, E(m)) \leq \epsilon \cdot n \)

\(\forall \text{ input } i \in [k] \)

\[\Pr[D_y(i) = m_i] \geq \frac{2}{3} \]

Motivation:

Current Encoding:

- Either store all info in 1 big block
 - good error-correction, but slow
 \((\approx \text{length of block}) \)
- Or break into small pieces
 - quick correction, but \(\Pr[\text{Error}] \rightarrow 1 \)

LDC's try to bridge gap.
Sublinear LDCs via Multivar. Polynomials

Idea: Need code to have local "redundancies" (small set of coordinates that have dependences)

- Reed-Solomon has no such redundancies

Idea: - use low-degree multivar. polynomials

- Locality? On every line, function values restricted.
General setting:

- \# variables = m
- degree = d
- Field size = \(q > \frac{d}{1-2\epsilon} \)
- Code = Evaluations of deg. d polys in m variables.

Resulting parameters

\[n = q^m \]

\[k = \binom{d+m}{m} \geq \left(\frac{d}{m} \right)^m \approx \frac{(1-2\epsilon)^m}{m^m} . n \]

\[d = (-2\epsilon) \cdot n \]

locality \(l = q = n^m \)
Some interesting choices:

- \(m = \frac{1}{\varepsilon} : \frac{k}{n} \approx \varepsilon \)

\(l = n^\varepsilon \)

- \(q = O(1) : n = \exp(k^{1/2-1}) \)

\(l = q \)

- \(m = \frac{\log n}{\log \log n} : \quad n = \text{poly}(k) \)

\(l = \text{poly log } n \).

Initial beliefs:

Maybe roughly best possible behavior?

- locality \(n \Rightarrow \frac{k}{n} \Rightarrow o(n) \) ?

- locality \(O(1) \Rightarrow n = \exp(k^\varepsilon) ? \)
Multiplicity Codes: [Kopparty - Saraf - Yekhanin]

Messages: d, m-variate polynomials.

Encoding: Evaluation of message polynomial, and all its derivatives up to order s.

Alphabet: $\mathcal{E} = \mathbb{F}_q^{m+s \choose m}$

such derivatives

Key Lemma: “Multiplicity Schwartz-Zippel”

\[p \in \mathbb{F}_q[x_1, \ldots, x_m], \deg p \leq d, p \neq 0 \]

\[\Rightarrow \exists \bar{a}, P_{\bar{a}} \left[P \& \text{all its partial derivatives} \right] \leq \frac{d}{(s+1) \cdot q} \]
Parameters

\[k = \binom{d+m}{m} \approx \left(\frac{d+m}{m+s} \right)^m \rightarrow \left(\frac{d}{s} \right)^m \]

\[q = \frac{d}{s} (1-e) \]

\[n = q^m = \frac{k}{(1-e)^m} \]

By letting \(m \) grow, \(e \) then \(s \) grow even faster, can have

\[l = n^s, \quad \frac{k}{n} = (1-s)^m \text{ simultaneously!} \]
$O(1)$ - Locality Regime

[Yekhanin '07]
[Raghtavendra '08]
[Efremenko '09]

Main Result: \(\exists \) nodes with \(\ell = 3 \) and
\[
\eta = \exp(\exp(\sqrt{\log k}))
\]
(\text{compare with} \ \eta = \exp(k^{1/2}))

More generally, \(\ell = O(1) \)
\[
\eta = \exp(\exp((\log k)^{\varepsilon}))
\]

Construction without intuition in rest of notes.
Ingredients

- Parameter $m \in \mathbb{Z}^+$ (small...)
- field \mathbb{F}_q with $m \mid q - 1$
 (so \mathbb{F}_q has primitive m^{th} root)
- $s \in \mathbb{Z}_m$, $0 < s$
- s-Nia matrix $M \in \mathbb{Z}_m^{k \times n}$

Defn: M is s-nice if, for

\[
M = \begin{bmatrix}
M_1 & M_2 \\
M_2^T & M_1^T
\end{bmatrix}
\]

\(1\) $(M_1)_{ii} = 0$, \(2\) $(M_1)_{ij} \in \mathbb{F}$ if \(i \neq j\)

\(3\) M is closed under column sums.
\mathbb{Z}_m-matrices $\Rightarrow \overline{\mathbb{F}}_q$-matrices

\[M_{ij} \rightarrow g^{M_{ij}} = G_{ij} \]

[g primitive m^{th} root in \mathbb{F}_q]

Theorem: G is generator of $(\mathbb{Z}_l + 1)$-LDC

(Terminology: G is "generator" of the encoding map $x \mapsto x \cdot g$)
Defn: $p \in \mathbb{F}_q[x]$ is S-zeroing poly if

1. $p(1) = 1$
2. $p(q^s) = 0 \forall s \in S$

Defn: $p \in \mathbb{F}_q[x]$ is t-sparse if p has at most t non-zero coefficients.

Lemma: If S has a t-sparse S-zeroing poly, then $G = H(M)$ is t-LDC.

Proposition: Every $S \leq \mathbb{Z}_m^*$ has a $(|S|+1)$-zeroing polynomial.

(Lemma + Proposition \Rightarrow Theorem)
Proof of Lemma

to be filled.

Construction of nine matrices
to be added.