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Of central importance to Algebra and Computation are structures such as groups, rings, and
especially finite fields. Here, we review basic definitions and cover the construction of finite fields.
It should be noted that these notes should not be used to learn about groups, etc. for the first time.

1 Basic definitions: Groups, rings, fields, vector spaces

Definition 1 (Monoid) For a set G and an operator · : G×G→ G, a pair (G, ·) is a monoid iff
the following properties are satisfied:

1. (Identity) There exists e ∈ G such that for all a ∈ G, a · e = a.

2. (Associativity) For all a, b, c ∈ G, a · (b · c) = (a · b) · c.

Definition 2 (Group) A monoid (G, ·) is a group iff for all a ∈ G, there exists an element b ∈ G
such that a · b = e. We say a group (G, ·) is commutative or Abelian iff for all a, b ∈ G, a · b = b · a.

Definition 3 (Ring) For a set R and binary operators · and + over R, the triple (R,+, ·) is a ring
iff the following properties are satisfied:

1. (Commutative addition) (R,+) is an Abelian group with identity element 0.

2. (Multiplication) (R, ·) is a monoid with identity element 1.

3. (Distributivity) For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c.

We say that a ring (R,+, ·) is a commutative ring iff for all a, b ∈ R, a · b = b · a. A ring is an
integral domain if it has no zero divisors.

Definition 4 (Field) A tuple (F,+, ·) is a field iff the following properties are satisfied:

1. (F,+, ·) is an integral domain.

2. (F − {0}, ·) is an Abelian group.

Definition 5 (Vector space) A set V (whose elements are called vectors), along with a vector
addition operation + : V × V → V and a scalar multiplication operation · : F× V → V , is a vector
space over the field F iff the following properties are satisfied:

1. (Closure under addition) (V,+) is an Abelian group.

2. (Scalar distributivity with respect to vector addition) For all α ∈ F, u, v ∈ V , α · (u + v) =
α · u+ α · v.

3. (Scalar distributivity with respect to field addition) For all α, β ∈ F, u ∈ V ,(α+β)u = αu+βu.

4. (Field, vector space associativity): For all α, β ∈ F, u ∈ V ,α(βu) = (αβ)u.

5. (Identity field element): For all u ∈ V , 1 · u = u, where 1 is the multiplicative unit of F.

Proposition 6 All finite vector spaces V over a field F is isomorphic to Fn for some n.
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2 Finite Fields

Much of the course will be concerned with computation over finite fields. Here, we’ll cover the basics
of finite fields: existence, uniqueness, and construction.

2.1 Notation

All the fields discussed below will be finite. p and q will almost always denote a prime and a prime
power (pt for some prime p and positive integer t), respectively. Symbols in the blackboard font will
denote fields, e.g. F. A subscript to a field symbol indicates the order of the field, e.g. Fp is a finite
field of prime order.

2.2 Prime fields

Definition 7 A field F is prime if |F| = p for some prime p.

Theorem 8 For every prime p, a finite field of size p exists, and moreover, it is unique up to
isomorphism.

Proof Consider the quotient ring Z/pZ. It is a field, and a field of size p. Let K,L be two
fields of order p. For isomorphism, map 0K to 0L, 1K to 1L; since K∗ and L∗ (the multiplicative
groups of K and L respectively) are cyclic groups, this mapping extends naturally and uniquely to
an isomorphism between K and L.

Definition 9 The characteristic of a finite field char(F) is the smallest integer n such that the
multiplicative identity 1 added to itself n times is equal to the additive identity 0.

2.3 Constructing Fields from Fields

Constructing non-prime fields is more interesting; we will actually construct them starting with
prime fields. But before we get into that, let’s look at how we can construct larger fields from
smaller ones.

Definition 10 (Field of fractions) Let R be an integral domain. The field of fractions F (R) =
R × R/ ∼ where ∼ is an equivalence relation such that a, b, c, d ∈ R, (a, b) ∼ (c, d) if and only if
ad = bc.

Proposition 11 The field of fractions F (R) for an integral domain R is a field.

Here are two primary ways of constructing fields from fields. Let F be a field, and let F[X] be
the ring of polynomials with coefficients in F.

1. F (F[X]), the field of fractions, is called the field of rational functions over F.

2. Let g ∈ F[X] be an irreducible polynomial. Then F[X]/(g) is a field.

2.4 Constructing Non-prime Fields

Lemma 12 Let F be a finite field. Then it has prime characteristic.
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Proof Suppose F had characteristic r = ab > 1, where a, b 6= 1. That means the sum 0F =
r︷ ︸︸ ︷

1F + · · ·+ 1F can be divided up into a groups of β =

b︷ ︸︸ ︷
1F + · · ·+ 1F. By assumption, β 6= 0F. Then,

0F = β−1 · 0F = β−1(

a︷ ︸︸ ︷
β + · · ·+ β) =

a︷ ︸︸ ︷
1F + · · ·+ 1F, contradicting the minimality of r.

Fact 13 Let a, b ∈ F where F has characteristic p. Then (a + b)p
r

= ap
r

+ bp
r

for any positive
integer r.

Lemma 14 Let F be a finite field, with characteristic p. Then F is an Fp-vector space.

Proof This follows from the uniqueness of prime fields; we can think of Fq as being Z/pZ. Vector
addition is the same as addition in F, and scalar-vector multiplication is repeated addition in the
obvious manner.

Corollary 15 Let F be a finite field. Then |F| = pt for some prime p and some positive integer t.

Proof This follows from the earlier fact that all finite vector spaces over F are isomorphic to Fn
for some n.

Lemma 16 (Division Lemma) Let f, g polynomials in F[X] for some finite field F. Then there
exists a unique pair (q, r) ∈ F[X] such that deg(r) < deg(g) and f = q · g + r.

Proof Existence of a pair (q, r) follows from the standard polynomial division algorithm. We now
argue uniqueness: suppose there were two such pairs (q, r) 6= (q̃, r̃). Then (q − q̃) · g + (r − r̃) = 0,
but this is impossible, because if q 6= q̃, then (q − q̃) · g is a nonzero polynomial of degree greater
than r − r̃, and if q = q̃ but r 6= r̃, then r − r̃ is also a nonzero polynomial, a contradiction.

Corollary 17 Let f ∈ F[X]. For all a ∈ F, f(x) ≡ f(a) mod (x− a).

Corollary 18 Let f ∈ F[X] have degree r. Then f has at most r roots in F.

Proof This follows from the Division Lemma and the previous corollary: repeated division of f
by (x−r) for a root r ∈ F will eventually whittle f to either a constant or an irreducible polynomial.

Lemma 19 (Multiplicative group of finite fields are cyclic) Let F be a finite field. Then F∗,
the multiplicative group of F, is cyclic.

Proof Let F have order pr for some prime p and positive integer r. The multiplicative group F∗
has order pr − 1. Let p̂ be some prime that divides pr − 1, and let Up̂ be the subgroup of elements
of F∗ whose orders are a power of p̂. Clearly, by Lagrange’s theorem, Up̂ has order qs for some s.

Suppose Up̂ were not cyclic. Then all elements of Up̂ must be roots of the polynomial xq
s−1 − 1

(by Lagrange’s theorem), which contradicts the corollary above. Thus all subgroups of F∗ of prime
power order are cyclic. By the Fundamental Theorem of Abelian groups, we can write F∗ as the
direct sum Zq1 ⊕ · · · ⊕ Zqk , where each qi are prime powers. The foregoing argument shows that
any pair qi and qj (i 6= j) must be coprime, and it is easy to see that the entire direct sum must be
cyclic.
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Corollary 20 Let F be a field of order q. Then xq − x =
∏
α∈F (x− α).

Proof xq − x has at most q roots in F. It now suffices to show that for all α ∈ F, x − α divides
xq − x, or equivalently that α is a root. If α = 0, then it is clear. Otherwise, note that non-zero α
is contained in F∗, which has order q − 1. By Lagrange’s theorem αq = α, and we are done.

We now are ready to construct our field of order q = pr. To do so, we will construct a polynomial
in Fp[X] whose roots all lie in an extension field of Fp, and the extension field will have order q.

Definition 21 (Extension field) Let K,L be finite fields. L is an extension field of K iff K ⊆ L
and L is an K-vector space. We denote the field extension as L/K.

Frequently, however, we will also say that L/K is a field extension even if K isn’t technically a
subset of L, but rather, naturally embeds into L. For example, an important method of constructing
extension fields for us will be to take a field F, and consider the quotient field L = F[X]/(f) for some
polynomial f ∈ F[X]. Since F naturally embeds into F[X] which naturally embeds into F[X]/(f),
we also say that L/F is a field extension.

Lemma 22 Let F be a field of order q. Let f ∈ F[X] be an irreducible, monic polynomial of degree
r. Then the quotient ring F[X]/(f) is a field and has order qr.

Proof We provide a proof sketch. F[X]/(f) must be a field: there are both additive and multi-
plicative inverses, and since f is irreducible, the underlying ring of F[X]/(f) is an integral domain.
Furthermore, it is a vector space over F. Observe that 1, X,X2, . . . , Xr−1 forms a basis for F[X]/(f),
so F[X]/(f) must have dimension r and thus cardinality qr.

Lemma 23 (Splitting Field Lemma) For all g ∈ F[X], there exists a field extension L of F such
that g splits completely into linear factors in L[X].

Proof Suppose F were of order q. There are two cases: g ∈ F[X] is irreducible, or not irreducible.
Support it were irreducible. Consider the quotient field L = F[X]/(g); it is of size qr where r =
deg(g). Then by the above corollary, g splits completely into linear factors in L[X]. If g were not
irreducible, then we can write g = ab, where a is an irreducible polynomial and b is a nontrivial
polynomial. Since a splits completely over F[X]/(a), we can then recurse on splitting b over an
extension field of F[X]/(a), until we finally obtain a final extension field where g completely splits.

Definition 24 Let F ⊆ L be fields, and g a polynomial in F[X]. Then L is called the splitting field
of g over F if and only if g factors completely into linear polynomials in L[X].

We will use the Splitting Field Lemma to construct our field of order qr for any r.

Proposition 25 Let L be a splitting field of xq
r − x over Fq. Then S = {α ∈ L | αqr = α} forms a

field of order qr.

Proof Since L is the splitting field of g(x) = xq
r − x over Fq, we know that all of g’s completely

factors into linear polynomials over L[X]. We now show that all the roots of g have multiplicity 1,
establishing that there are qr distinct roots of g in L, and thus S has cardinality qr. S is clearly a
field. Suppose α 6= 0 ∈ L is a root of g, and that for contradiction (x−α)2 divided g. Since 0 cannot
be a double root of g (by inspection x2 does not divide xq

r−x), (x−α)2 must divide g′(x) = xq
r−1−1.

However, g′(x) ≡ r(x) mod (x−α), where r(x) =
∑qr−2
i=0 αq−1−ixi, but r(α) = (qr−1)αq

r−2, which
is not 0.
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Lemma 26 (Unique containment) Let F,G be subfields of K. If |F| = |G|, then F = G.

Proof Let K have order pr for some prime p. All subfields of K must have order pk for k ≤ r.

Suppose |F| = |G| = pk. Consider the polynomial f(x) = xp
k − x ∈ K[X]. All elements of F and G

must be roots of f , but since f can have at most pk roots in K, F = G.

Lemma 27 (Uniqueness of finite fields) Let Fpr be a finite field of order pr as constructed
above. It is unique up to isomorphism.

Proof Let K,L be finite fields of order pr. Then both are splitting fields of the polynomial
xq − x, where we let q = pr. The finite field Fp embeds uniquely into both K and L. Let φ be the
isomorphism between the copy of Fp in K and the copy in L. Treating K and L as vector spaces
over Fp where each element of the vector space is an ordered tuple of Fp, it is clear that φ extends

to an isomorphism φ̃ between K and L.

We’ve shown a way to construct the unique field of order q for any prime power q. We now show a
more direct method of creating Fq.

2.5 Constructing finite fields via minimal polynomials

Definition 28 (Minimal polynomial) Let K be a finite field extension of F. Let α ∈ K. Then
the minimal polynomial of α over F is a monic, irreducible polynomial g of minimal degree in F[X]
such that g(α) = 0.

Definition 29 (Adjoining field elements) Let L/K be a finite field extension. For all α ∈ L,
K(α) denotes the minimal subfield of L that contains α. We say that K(α) is the field formed by
adjoining α to K.

Fact 30 Let L/K be a finite field extension, and α ∈ L. Then every element a ∈ K(α) can be
expressed as the sum a0 · 1 + a1 · α+ · · ·+ ak · αk for some k, where ai ∈ K.

Lemma 31 Let L/K be a finite field extension. Let g be the minimal polynomial for some α ∈ L
over K. Then K(α) ∼= K[X]/(g).

Proof Write g = g0 + g1X + g2X
2 + · · · + gdX

d. Then K[X]/(g) is a degree d field extension
of K, thus |K[X]/(g)| = qd for q = |K|. We argue that |K(a)| = qd as well, and by the uniqueness
of finite fields, this shows our lemma. K(α) is an extension field over K, and hence is a K-vector
space. {1, α, α2, . . . , αd−1} is a basis for K(α): observe that every element of K(α) can be written
as a0 · 1 + a1 · α + · · ·+ ak · αk for some k, where ai ∈ K. For any k ≥ d, the set {1, α, α2, . . . , α

k}
is linearly dependent - the polynomial g gives the linear dependency. The set {1, α, α2, . . . , α

d−1}
is linearly independent, for otherwise g would not be a minimal polynomial for α. Thus K(α) is a
K-vector space of dimension d, and the conclusion follows.

Lemma 32 Let g is an irreducible polynomial of degree s in Fq[X]. Then g divides xq
t −x ∈ Fq[X]

if and only if s divides t.

Lemma 33 Let q be a prime power and r be some positive integer. Then:

xq
r

− x =
∏

g irreducible, monic ∈Fq [X]
deg(g)|r

g(x)

Corollary 34 For all prime power q, positive integer r, there exist an irreducible, monic polynomial
g ∈ Fq[X] of degree r.
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3 Functions over finite fields

There is a nice way of looking at functions over finite fields as polynomials. Consider some function
f : Fq → Fq. f can be, without loss of generality, be represented as some univariate polynomial of
degree at most q − 1 (this follows from polynomial interpolation). Let us look at a particular class

of functions f that map Fqr to Fq. We can still write f(x) =
∑qr−1
i=0 cix

i. Since we know the range
of f is contained in Fq, we have that (∑

cix
i
)q

=
∑

cix
i.

Since α is a root of fq − f for all α ∈ Fqr , it follows that xq
r − x divides fq − f , or equivalently

fq = f mod (xq
r − x). We then note that

f(x)q =
(∑

cix
i
)q

=
∑

cqix
iq.

We then can reduce xiq modulo xQ − x, where Q = qr. This is easy to do because the roots of
xQ−x are precisely FQ, and thus xiq = xiq mod (Q−1) modulo (xQ−x). Observe that the map i 7→ iq
mod (Q−1) is an invertible map for i ≤ Q−1, and thus is a permutation. Setting coefficients of the
equation fq = f mod (xQ−x) equal, we get that f maps Fqr to Fq if and only if ciq mod (Q−1) = cqi .

We can look for the “simplest” such function by demanding that as many ci’s be zero as possible,
without being trivial. This can be accomplished by setting c1 = 1, but that forces (by the equivalent
condition above) cqk = 1 for k ≤ r−1. This leads us to a particularly important function that maps
Fqr to Fq, called the trace:

Definition 35 (Trace) The trace Tr : Fqr → Fq is defined as Tr(x) = x+ xq + · · ·+ xq
r−1

.

Lemma 36 (Linearity of Trace) Tr is linear.

Lemma 37 Tr is a qr−1-to-1 map.

Proof Let α ∈ Fq. Then Tr(x) − α is a polynomial that maps Fqr to Fq with degree qr−1, and
thus it has at most qr−1 zeros. But that means every α ∈ Fq has a preimage under Tr of size qr−1:
otherwise there would be elements of Fqr that would not map to anything under Tr, which is absurd.

Perhaps a more interesting reason for why the trace function is important is because of its
“universality” with respect to functions that map Fqr to Fq, the following sense:

Theorem 38 Let f be a function that maps Fqr to Fq. Then there exists a polynomial g ∈ Fqr [X]
such that f = Tr(g).

Proof For each α ∈ Fq, define tα ∈ Fqr to be such that Tr(tα) = α (there are qr−1 choices to
pick from; choose arbitrarily). Then, interpolate a polynomial g of degree qr − 1 such that for each
χ ∈ Fqr , g(χ) = tf(χ). It is clear that f = Tr(g).
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