
6.S897 Algebra and Computation February 27, 2012

Lecture 6
Lecturer: Madhu Sudan Scribe: Mohmammad Bavarian

1 Overview

Last lecture we saw how to use FFT to multiply f, g ∈ R[x] in nearly linear time. We also briefly talked
about multipoint evaluation and interpolation for general points which we will expand on later in this
lecture. But the main topic today is to go over another two fundamental algebraic algorithms, namely
polynomial division and greatest common divisor problem. Both of these algorithms can be solved in
nearly linear time which shouldn’t surprise us now; as it has been already said a few times over the
course of these lectures, most routines in computational algebra, if can be done, usually can be done in
nearly linear time.

Today’s lecture will be the last lecture we have on the basic/ fundamental algebraic algorithms
that we will need for our future applications like factoring factoring polynomials in F[x] or F[x, y] and
etc. However, despite the fact that these algorithms such as fast GCD and polynomial division and
multiplication are very classical going back all the way to 50’s and 60’s, there has been a some very
recent interesting research on them. Specifically those who are interested may want to look up the paper
by Kiran Kedlaya and Chris Umans on modular composition which could of course, serve as a very nice
final project.

2 Polynomial Division Algorithm

We have the familiar polynomial division problem. Since we are working in general ring R we need
to assume the polynomial we are dividing on is monic to guarantee that we do not face the awkward
position of trying to divide x2 − 1 over 2x over Z[x].

Input: f, g ∈ R[x]. g monic.

Output: q, r ∈ R[x] with f = gq + r and deg r < deg q.

The long division algorithm we learned in school solves this problem in quadratic time. To get a faster
algorithm we will use a version of Hensel lifting that allows us to compute the inverse of a polynomial
f−1 modulo x2l using its inverse modulo xl. We should note that Hensel lifting in more general form
will feature prominently in our future lectures.

But before getting into the details of the algorithm we need a definitions:

Definition 1 Let f =
∑n
i=0 cnx

i be a of degree n in R[x], cn 6= 0. We define Rev(f) =
∑n
i=0 cn−ix

i.

Now notice that when f is monic rev(f) has 1 as its constant coefficient and also we have:

Rev(f) = xnf(
1

x
) ⇒ Rev(fg) = Rev(f)Rev(g)

Now using above we relation Rev(f) = xnf(1
x) we see that

Rev(f) = Rev(gq + r) = Rev(g)Rev(q) + xn−deg(r)Rev(r)

Since deg(g) > deg(r) we see that

Rev(f) = Rev(q)Rev(g) mod (xdeg(f)−deg(g))

6-1

This modular equation was the main reason that we went over the trick of inverting the order of
coefficient of our polynomials. Now finally we have

Rev(q) = Rev(g)−1Rev(f) mod (xdeg(f)−deg(g))

So if Rev(g)−1 exist and can be easily computed, we can use our nearly linear multiplication to
compute Rev(g) modulo xdeg(f)−deg(g). Since this is exactly the degree of q, we immediately recover
Rev(q) and hence q from this procedure.

2.1 Inverses mod xl

Since g was monic Rev(g) has 1 as its constant coefficient. Given a polynomial h(x) with unit constant
coefficient we observe that we can progressively choose coefficient a1, a2, . . . , am ∈ R such that

(1 + a1x+ a2x
2 + . . .+ al−1x

l−1) h(x) = 1 mod (xl)

Note that this is actually a well-known fact at least in case of fields that the units in the ring
F[x]/(xl) are exactly those polynomials coprime with xl which is a consequence of small bezout’s theorem
xlp(x) + h(x)q(x) = 1 . Also the fact that this inverse is unique is pretty clear.

The basic progressive algorithm to compute the coefficient ai’s is not linear time and hence we need
the idea of Hensel lifting to achieve a nearly linear time algorithm.

Input: h−1 mod xl.

Output: h−1 mod x2l.

The base case of the algorithm is trivial as for l = 1 we have that h−1 = 1 modulo x. Now given a
with aḣ = 1 modulo xl, we want to find ã = a+xlb such that ãh = 0 modulo x2l. Writing h = h0 +h1x

l

we see that ah0 = 1 + cxl for some polynomial c as a result of our input condition. So,

(a+ xlb)(h0 + xlh1) = ah0 + xl[bh0 + h1a] = 1 + xl[c+ bh0 + h1a] mod x2l

Multiplying the term bh0 + c+ h1a by a modulo xl we see that it suffices to take

b = −h−10 (h1a+ c) = −a(h1a+ c) mod xl

So each step requires about two polynomial multiplication of degree l polynomials. Since we double
up l everytime, our time complexity is a geometric sum which sums up to constant multiple of the last
operation which is O(m(n)) where here m(n) stands for complexity of multiplication of polynomials
which is nearly linear time.

3 Multipoint Evaluation and Interpolation

3.1 Multipoint Evaluation

Multipoint evaluation and its inverse, interpolation, are fundamental algorithms used in various other
algebraic algorithms. This was already seen in the special case Fourier transform, and inverse Fourier
transform, which were used in polynomial multiplication. Here we are interested interpolation and mu-
tipoint evaluation over generic points of R. More formally, here is the multipoint evaluation problem,

Input: f =
∑n
i=0 cix

i α1, α2, . . . , αn ∈ R.

6-2

Output: f(α1), f(α2), . . . , f(αn).

We will solve this problem in O(m(n) log n) by a divide and conquer algorithm which in each iteration
splits the problem into two multipoint evaluation problem of size half. The point is that what we want
to compute is f mod (x − αi) for every αi. Instead of f we could instead work with fmod

∏n
i=1(xαi)

as this preserves the f modulo (x − αi). The way we split this problem in half is to notice that if we
compute

f1 = f mod

n
2∏
i=1

(x− αi) and f2 = f mod

n∏
i=n

2 +1

(x− αi)

Now if we call the mutipoint evaluation for f1 with (α1, α2, . . . , αn
2

) and f2 with (αn
2 +1, . . . , αn) we

will get our solution to our original problem of multipoint evaluation of f over (α1, α2, . . . , αn).
Now notice that since f1 and f2 have degree less than n

2 this problem is indeed half the size of the
original problem. So by repeatedly calling two instances of half the size and using polynomial division

algorithm procedure to compute f1 and f2 by taking modular over
∏n

2
i=1(x − αi) and

∏n
i=n

2 +1(x − αi)
we will get our solution. However we are not quite done yet !

Notice that we have implicitly assumed all the polys of the form
∏n
i=n

2 +1(x− αi) and their smaller

counterparts, which will be needer in deeper recursions, are known which in fact is not true; so we
must be comput these polynomials. The point is that we only discussed going down over the tree of our
recursion, we have to actually go up as well: Starting from pairs (x−α2k−1) and (x−α2k) we can compute
(x− α2k−1)(x− α2k). Now using the product say (x− α2k−1)(x− α2k) and (x− α2k+1)(x− α2k+2), we
can compute (x−α2k−1)(x−α2k)(x−α2k+1)(x−α2k+2). As such we must go up over the log n layers of
our recursion and compute the polynomials we need. Luckily we have our fast polynomial multiplication
which gives near linear time computation of polynomial products in each layer and hence with O(logn)
overhead coming from the number of layers, we can go up the tree in O(m(n) log n) as promised. Since
polynomial division also takes O(m(n)) in each layer of recursion, we get the total time of O(m(n) log n).

3.2 Interpolation

For interpolation we will assume R = F is a field because we need division over some elements which
in general might not have inverse in R. This is not surprising as for general R interpolation might not
have a solution. For example, you cannot find linear function in Z[x] that takes value zero at zero and
value 1 at say x = 2. So here is our problem.

Input: α1, α2, . . . , αn, β1, β2, . . . , βn ∈ R.

Output: c0, c1, . . . , cn−1 such that f(x) =
∑n−1
i=0 cix

i and f(αj) = βj .

Now let’s first understand why the non-algorithmic version of this problem makes sense. It is easy
to see for essentially the same reason that number of roots of a non-zero polynomial is bounded by its
degree, that there is at most one polynomial satisfying the condition of the output. Now consider the

polynomials of the form hj =
∏n

i=1(x−αi)

(x−αj)
. Note that hj(αi) = 0 for all i 6= j and hj(αj) 6= 0. So we

can easily see that we can write f(x) as linear combination of hj ’s. However above procedure again is
quadratic and we seek a nearly linear time algorithm.

The idea is very similar to the case of fast multipoint evaluation. We again split the problem into
two problems of half the size as follows: As in in the case of multipoint evaluation, by going up the tree

6-3

of recursion, we can assume we know the polynomials

Z1 =

n
2∏
i=1

(x− αi) Z2 =

n∏
i=n

2 +1

(x− αi)

We want to find f1 and f2 such that

f = f2Z1 + f1Z2 deg(f1), deg(f2) <
n

2

Looking at above equation modulo (x − αi) we see that f1(αi) = βi

Z2(αi)
for all 1 ≤ i ≤ n

2 and

f2(αi) = βi

Z1(αi)
for all n

2 + 1 ≤ i ≤ n. So we can solve for f1 and f2 using interpolation of half the size.

The values of {Z1(αi)}’s and {Z2(αi)}’s can be computed using multipoint evaluation. Looking at the
recursion cost we see that the total cost is again nearly linear time with respect to n.

4 Greatest Common Divisor Problem

It is indeed a surprising fact computational aspects of algebra that while factoring seems like such a
hard problem, finding common factors, i.e. the GCD problem has such simple efficient algorithm.

Given a ring R recall the following definitions :

• Units : elements such as u which have (multiplicative) inverses.

• Division: a divides b denoted by a|b if a = bk for some k ∈ R.

• Irreducible: a is irreducible if it is not a unit and a = bc implies b or c is a unit.

• Associates: a ∼ b if a and b are equal up to multiplication by units, i.e. a = bu and u−1 ∈ R.

• Unique Factorization Domain: If every x ∈ R can be written as (finite !) product of irreducibles
and if a1a2 . . . al = b1b2 . . . bk where ai’s and bi’s are irreducibles we have that k = l and there
exist a permutation π such that ai ∼ bπi

.

Definition 2 The greatest common divisor of two element a, b ∈ R is gcd(a, b) = g if g is a common
divisor, i.e. g|a and g|b, and for any other common divisor, h|a and h|b we have h|g.

For the GCD problem we shall assume our ring is R = F[x] as these rings can be shown to be
unique factorization domains. Note that the greatest common divisor is guaranteed to exist for UFD’s
by looking at the irreducible factorization of a and b and taking the largest intersection between the
associate irreducible factors (taking account of associativity).

Definition 3 An ideal I ⊂ R is a set closed under addition and multiplication.

a, b ∈ I −→ λa+ λ′b ∈ I ∀λ, λ′ ∈ R

Let I(a, b) = {λa + λ′b |λ, λ′ ∈ R} denote the smallest ideal congaing a and b. As always in this
section we assume R = F[x]. This gives to our ring the notion of the degree. We have the following
proposition relating the gcd(a, b) to the notion of ideal above.

Proposition 4 The polynomial of smallest degree in I(a, b) is gcd(a, b).

6-4

Proof Let g be the smallest degree polynomial in I(a, b). g must divide a and also b because any
remainder of the division would be a polynomial of smaller degree in I(a, b). Given any h|a and h|b we
have h|λa+ λ′b which for a particular choice of λ and λ′ becomes g which gives us h|g for any common
divisor h.

The basic algorithm for computing gcd(a, b) is exactly the one we learned as euclid’s algorithm in
school. Recall that this algorithm is as follows:

1. Given (a, b) if b|a return b.

2. Return GCD(b, a mod b)

Since degree of polynomials can decrease only one at a time and everytime we need a at least linear
time polynomial division to calculate the remainder, this will take Õ(n2).

However, there exist indeed a fast, i.e. near linear time, algorithm for GCD(a, b) due to Schönhage.
The algorithm is based the Half-GCD subroutine.

To appreciate this we have to take a closer look at the euclidean division algorithm. In each iteration
euclidean division algorithm given (a, b) returns to us two elements (b, a − qb). So from one generator
of the ideal I(a, b) we go to a different generator of the same ideal, i.e. I(b, a− qb) = I(a, b). So we ask
ourselves more generally for which pairs c, d ∈ I(a, b) we in fact have I(a, b) = I(c, d). Well we know
that (c, d) are linear combinations of (a, b) so,(

α β
γ δ

)(
a
b

)
=

(
c
d

)
Given that (c, d) are linear linear combination of (a, b) for I(a, b) = I(c, d) we must have a, b are

also linear combination of (c, d) which exactly means that the above 2× 2 matrix has an inverse. So we
can more generally look at any sequence of multiplication by invertible matrices in in M2(R) as a more
general way to compute GCD(a, b). Schematically, the euclidean algorithm gives us a chain of maximum
n matrix mi ∈M2(R) which at the end ends up with a vector that has one component zero.(

a0
b0

)
→m1

(
a1
b1

)
→m2 . . .

(
Gcd(a, b)

0

)
Now to understand Half-GCD subroutine look at the progression of euclidean algorithm over the

generators (ai, bi)’s. There exist some i at which deg(ai) >
deg(a)

2 and deg(bi) ≤ deg(a)
2 . Now we had a

subroutine that given (a, b) found (c, d) with above condition, since this subroutine each time halved the
degree, it would have been very helpful because by iterating that subroutine we could solve the problem
in constant times the time it takes to solves that subroutine for size n. Now that subroutine is called
Half-GCD.

The critical idea for computing the Half-GCD efficiently comes from the following lemma:

Lemma 5 Let polynomials a = a0+xka1 and b = b0+xkb1 be given where k = deg(a)
2 . Let N1, N2, N3, . . .

be the sequence of matrices we get from applying euclidean division on the pair (a, b). Analogously let
L0, L1, L2, . . . be the sequence of matrices we get from applying euclidean division for (a1, b1). Let i be

an index small enough such that (c1, d1)T = Li(a1, b1)T and deg(c1) > deg(a1)
2 . Then Li = Ni.

What is this lemma saying at an intuitive level? the lemma is indeed an statement about the inner-
working of euclidean algorithm. It basically says that if instead of looking at the pair (a, b) you look at
the pair (a1, b1) which have the similar structure in high order terms, the sequence of matrices generated
by euclidean algorithm is exactly the same as the one from applying euclidean algorithm to (a, b) itself.
This really makes sense because as we do euclidean gcd algorithm at the initial levels, unless some fast
cancelling of higher order term happens, all the divisors we pick are dictated by higher order terms.

6-5

Here the notion of smallness of number of iterations is quantified by the condition that i is such that

(c1, d1)T = Li(a1, b1)T satisfy deg(c1) > deg(a1)
2 .

Now given this lemma it is easy to imagine how the fast algorithm for computing GCD would go
because for computing the half-GCD of (a, b), it is enough to compute the half-GCD matrix associated
with (a1, b1) which halves the size of the problem and then we can iterate on this. (Note that we need
the whole matrix not just (c1, d1))

A lot of the details for this part of lecture was omitted and we advise the interested reader to contact
Prof. Sudan himself for further understanding this algorithm and its related issues.

5 References

1. K. Kedlaya and C. Umans. Fast modular composition in any characteristic. Proceedings of the
49th Annual IEEE Symposium on Foundations of Computer Science (FOCS). pages 146-155. 2008

6-6

