
6.S897 Algebra and Computation February 29, 2012

Lecture 7
Lecturer: Madhu Sudan Scribe: Eric Price

Today we enter the fun part of the course: factoring polynomials. Today we discuss univariate
polynomials over finite fields; we’ll move on later to the multivariate case, then discuss factoring
over integers. It’s actually really surprising than we can do this at all: a priori, there doesn’t seem
to be any reason we can factor in polynomial time. It seems hard to factor integers, so why should
it be efficient for polynomials? Nevertheless, we shall see today that it is possible.

The approach we describe is due to Berlekamp. The plan is the following:

1. Factoring quadratics

2. Factoring polynomials with linear factors

3. General: poly(n, log q)

4. Deterministic: poly(n, p, log q).

Throughout this talk, we will be factoring over Fq, where q = pt for prime p. We will assume
that p 6= 2 except in Section 4, where we describe how to modify the algorithms to handle that case.

1 Factoring univariate polynomials

1.1 Quadratics

Consider factoring a quadratic f(x) = x2 + ax + b = (x − α)(x − β) over Fq. Given (a, b) the task
is to find (α, β).

First, we show how to factor when α is a quadratic residue and β is not. Then α(q−1)/2 = 1 and
β(q−1)/2 6= 1, so (x−α) | x(q−1)/2−1 and (x−β) - x(q−1)/2−1. This implies that gcd(x(q−1)/2−1, f) =
x− α.

Note that we don’t run the gcd algorithm on x(q−1)/2 − 1 as a vector of dimension (q − 1)/2;
instead, we compute g(x) := x(q−1)/2 mod f , and run gcd(g(x)−1, f). To compute g(x), we compute

x2
i

mod f for i ∈ [log2 q] via repeated squaring, and multiply together the appropriate terms mod
f . Then we can compute gcd(g(x)− 1, f). Overall, this takes poly(n, log q) time.

Now let’s consider the general quadratic, where we don’t assume that exactly one root is a
quadratic residue but we do assume α 6= β. Given c, d ∈ Fq, we consider c2f(x−dc), which has roots
(αc + d, βc + d). If c ∈ F∗q and d ∈ Fq are chosen uniformly at random, then the new roots are
uniformly at random from F2

q. Hence there is a one-half chance that exactly one root is a quadratic
residue, in which case the previous algorithm will find it. So we can repeat until this occurs.

1.2 Linear products of distinct terms

In general, we have f(x) =
∑n
i=0 fix

i =
∏n
i=1(x− αi), with fn = 1.

First, we assume the αi are distinct. Then with the affine transform αi → αic+ d, for each pair
(αi, αj) there is a one-half chance that exactly one new root αic + d is a quadratic residue. Hence
if f ′ = c2f(x−dc) and g = gcd(x(q−1)/2 − 1, f ′), there is a one-half chance that αic + d and αjc + d
split over g and f ′/g. We then repeat to factor g and f ′/g.

Since each pair (i, j) splits with constant probability in each round, after O(log n) rounds each
pair is split with 1 − 1/n3 probability. Hence all pairs are split with 1 − 1/n probability, in which
case every polynomial is a monomial x− αi. So this lets us factor f if all the αi are distinct.

7-1

1.3 Repeated roots

To find repeated roots, we apply a technique that generalize throughout the course. The idea is
to find repeated factors via the derivative f ′: we compute gcd(f, f ′) to get a smaller polynomial
containing the repeated factors, and recurse.

The derivative in finite fields is defined as you would expect:

Definition 1 We define the derivative f ′ by

• (αxd)′ = dαxd−1

• (f + g)′ = f ′ + g′

Claim 2 The derivative obeys the following rules:

1. Product rule. (fg)’ = f’g + g’f

2. If gi | f , then gi−1 | f ′.

Then f ′ has smaller degree than f , and for any repeated root (x− α)d, x− α | gcd(f, f ′). Then
gcd(f, f ′) contains all the repeated factors and has smaller degree than f (assuming it is not zero,
a case we discuss later). So we can recursively factor gcd(f, f ′) to get the repeated factors, divide
them out, and factor the remainder as a product of non-repeated linear tems.

The aforementioned caveat is that gcd(f, f ′) can be zero, if f ′ = 0. But this only happens if

f(x) =
∑
cix

ip = (
∑
c
1/p
i xi)p, where c

1/p
i can be computed by c

1/p
i = cp

t−1

i for q = pt. So if f ′ = 0,

we can reduce to factoring
∑
c
1/p
i xi.

Combining the results so far, we can factor any polynomial that splits into linear factors. What
if f has irreducible factors? We could extend the field and factor over the extension. This is kind
of complicated, so we’ll instead give an explicit method for finding degree d irreducible factors.
However, before we do so, we will first give a deterministic algorithm to check if a polynomial f is
irreducible. This has the benefit of turning our randomized factoring algorithm from a Monte Carlo
algorithm (which has a tiny chance of giving the wrong output) into a Las Vegas algorithm (which
always outputs the correct answer, but has a tiny chance of taking a long time).

2 Deterministic Reducibility Testing

Recall that xq − x =
∏
α∈Fq

(x − α). Therefore f(x) | xq − x if and only if f splits into distinct

linear factors. Similarly, recall that if f(x) is irreducible and degree d then f(x) | xqd − x. Then if

gcd(f, xq
d − x) is non-trivial, f must have an irreducible factor of degree dividing d. So to check if

f is irreducible, we check these gcds for d = 2, 3, . . . , n.

3 Higher degree irreducible factors

Suppose q(x) has degree 2n, but only has t coefficients, and a(x) has degree d. Then we can compute
q(x) mod a(x) in poly(t, d, n) time via repeated squaring.

Then to factor f , we

• Eliminate repeated factors by gcd

• f0 ← f

• For i = 1 to n

7-2

– gi ← gcd(fi−1, x
qi − x)

– fi+1 = fi/gi

– Factor gi into degree i factors using the method described below.

• Output all factors recovered.

The essential case is to factor g = g1 · g2, where g1 6= g2 and both are irreducible of degree d. We
consider the two fields Fq[x]/g1 and Fq[x]/g2. We want to find an irreducible h such that h(x) is a
quadratic residue in one field but not in the other one. The Chinese Remainder Theorem says that
Fq[x]/(g1g2) is isomorphic to Fq[x]/g1 × Fq[x]/g2. So we choose a random h ∈ Fq[x]/(g1g2), which
makes (h mod g1, h mod g2) uniform from the product space. With 1/4 probability, h is a quadratic
residue modulo g1 and is not a quadratic residue modulo g2.1 We can check this by verifying that

gcd(h(x)(q
d−1)/2 − 1, g) = g1.

In general, for g =
∏
gi, then we get that g′ = gcd(h(x)(q

d−1)/2 − 1, g) is a nontrivial, smaller
polynomial with good probability. So we can repeat on g′ and g/g′ until we reach degree d factors,
which are the desired irreducible factors of f .

For the running time: we’ve shown polynomial time. Efforts have been made to speed it up,
with the best not being quite linear—more like n1.5.

4 p = 2

What if q = 2t? Then (q−1)/2 is not an integer, so gcd(f, x(q−1)/2−1) doesn’t make sense. However,
in this case we have

x2
t

− x = Tr(x)(Tr(x)− 1)

where the trace Tr: F2t → F2 satisfies Tr(x+ y) = Tr(x) + Tr(y) and has degree 2t−1. Explicitly, it

is Tr(x) = x+ x2 + . . .+ x2
t−1

. We can check Tr(x+ y) = Tr(x+ y)2 =
∑
x2i + y2i = Tr(x) + Tr(y)

to verify the claim.
Then (x − α) | Tr(x) for half the α ∈ Fq, so in the previous sections we simply replace

gcd(f, x(q−1)/2 − 1) with gcd(f,Tr(x)) to factor into linear factors. To factor into irreducibles,
we replace gcd(g, h(x)(q−1)/2) by XXX.

5 Deterministic factoring

The above algorithms involve randomly shifting the roots so they split. Can we factor without this
randomness? We will see that the answer is yes in fields of small characteristic – poly(n, p, log q)
time.

Consider the problem of factoring g. Our goal will be to find h(x) such that

hp − h = 0 mod g. (1)

Two obvious solutions exist: h = g and h = α ∈ Fp. We will require deg h < deg g and deg h ≥ 1.
First, we show why this is sufficient. We know that

hp − h =
∏
α∈Fp

(h− α).

Thus we will have g |
∏
α(h − α), so there exists an α with gcd(g, h − α) non-trivial. Since h has

smaller degree than g, we make progress.

1Excluding the cases where h divides one of g1 and g2. But these cases are rare, with q−d probability; even if they
weren’t rare, one could test gcd(h, g).

7-3

So it suffices to find such an h. Note that this is a linear system: if h1 and h2 satisfy (1), then
(h1 + h2)p = hp1 + hp2 = h1 + h2 by the characteristic and by (1). We don’t have time to go into
details, but linear systems can be solved in polynomial time.

7-4

