
6.S897 Algebra and Computation March 5, 2012

Lecture 8
Lecturer: Madhu Sudan Scribe: Eric Miles

In the last lecture, we saw a method for factoring univariate polynomials over finite fields. Today,
we will begin covering the method for factoring bivariate polynomials. Throughout, we will restrict
our attention to monic polynomials.

Though the bivariate factoring algorithm applies to polynomials f ∈ F[x, y] for a field F, we will
view f as an element of R[x] for a commutative ring R. Taking R = F[y] of course gives f ∈ F[x, y],
but much of what we will cover is also applicable when R = Z, and thus today’s lecture will also be
useful when we discuss factoring polynomials over the integers.

One tool used in the analysis of bivariate factoring is the resultant Res(f, g) of ring elements
f, g ∈ R[x]. Jumping ahead, this has the property that Res(f, g) = 0 iff f and g share a non-trivial
factor. The resultant has many applications beyond factoring polynomials, and in Section 3 we will
highlight one of these, namely proving one direction of Bézout’s Theorem in the plane.

1 Overview

Let f ∈ R[x] be a monic polynomial over a commutative ring R; we are mainly interested in the
case when R = F[y] for a finite field F, though we will also mention some aspects of the case R = Z.
At a high level, the algorithm for factoring f has four stages.

1. Find an ideal I ⊆ R. Recall that an ideal is a subset closed under addition (∀a, b ∈ I : a+b ∈ I)
and under multiplication with R (∀a ∈ R, b ∈ I : ab ∈ I). If R = F[y] we can take I = (y) :=
{α · y | α ∈ F[y]}, and if R = Z we can take I = (p) := pZ for a prime p.

2. Factor f modulo the ideal I, i.e. write f as f = f1 · . . . · fk (mod I) for irreducible fi. The
hope is that this step is “easy”, using the results of the previous lectures. Indeed, if R = F[y]
then taking any f ∈ R[x] modulo the ideal (y) gives a univariate polynomial in x, which we
know how to factor. (Factoring f modulo a prime p over Z[x] is similarly possible.)

3. “Lift” the factors fi to polynomials f̃i such that f = f̃1 · . . . · f̃k (mod It) for a sufficiently
large value of t. This uses a technique called Hensel lifting, which will be covered in a future
lecture. Note here that It is the additive closure of {α1 · . . . · αt · β | αi ∈ I, β ∈ R}.

4. “Jump” from f̃1 to get a polynomial g that divides f in R[x]. This step will be the focus of
today’s lecture, and we will see that it reduces to solving a linear system over F when R = F[y].
This step is significantly more complicated when R = Z; in this case it reduces to solving a
certain lattice problem, and in the next lecture we will see how to solve this problem using the
Lenstra-Lenstra-Lovász (LLL) algorithm.

Already, one might be a bit skeptical about this approach. Consider f = xp − x + y ∈ Fp[x, y],
which is irreducible over Fp. Taking f modulo the ideal I = (y) gives the polynomial xp − x, and
we know from previous lectures that this splits into p distinct linear factors over Fp. However, all
factors of f modulo It for any t ≥ 2 must be trivial (i.e. either 1 or f).

More generally, suppose that f has the factorization g1 · . . . · g` in R[x]. Can f have fewer factors
when it is taken modulo I? Can it have more factors? The answer to both questions is, in fact, yes.
To see that it can have fewer factors, consider the case when gi = α + y · h(x) for some h ∈ F[x]
and α ∈ F. Then gi (mod I) is a constant, so f will have fewer (non-trivial) factors modulo I.

8-1

However this is actually a rare event, and we can circumvent this case by instead using a different
ideal I = (y + β) for an appropriately chosen β ∈ F.

To see that f can have more factors modulo I, take the irreducible polynomial f = xp − x + y
above which has p factors modulo I. Unlike the case where f (mod I) has fewer factors, we can not
simply circumvent this possibility, and there is a potentially one-to-many correspondence between
the factors of f and the factors of f (mod I):

f(x, y) = g1(x, y) · g2(x, y) · . . . · g`(x, y)

f (mod I) =
︷ ︸︸ ︷
f1(x) · . . . · fi1(x) ·

︷ ︸︸ ︷
fi1+1(x) · . . . · fi2(x) · . . . ·

︷ ︸︸ ︷
fi`−1

(x) · . . . · fk(x)

However when we cover Hensel lifting we will see that this state of affairs is acceptable, and that
repeatedly lifting f1 will give an f̃1 that has enough information to recover g1.

2 The “jump” step

We now explain the mechanics behind step 4 in the above algorithm.
Suppose that f splits into factors g1 · . . . · g` (unknown to us), and that we have the factorization

f = f1 · . . . · fk (mod I). Then this is also a factorization of
∏
i gi (mod I), and so f1 is a factor of

one of the gi (mod I); say without loss of generality that it’s a factor of g1. In step 3, we obtain via

Hensel lifting the factors f̃1 · . . . · f̃k, with the guarantee that f̃1 is a factor of g1 (mod It) under our
assumption that f1 is a factor of g1 (mod I). (Note that we have not yet specified an appropriate

value of t.) Define d := degx(f̃1) to be the x-degree of f̃1. Note that d < degx(f) (unless f is

irreducible modulo It), but degy(f̃1) might be very large.
Given this setup, we can now state the Jump Problem.

The Jump Problem. Find two polynomials g, h ∈ F[x, y] that satisfy the following conditions.

1. degx(g) ≤ d and degy(g) ≤ d.

2. g = f̃1 · h (mod It).

3. g has minimal x-degree.

In a moment we’ll come to why these polynomials might be useful for us, but first let’s focus
on solving this problem. One thing to notice is that if (g, h) and (g′, h′) are two pairs that satisfy
condition 2, then their sum (g + g′, h + h′) also satisfies condition 2. In fact, it turns out that the

Jump Problem reduces to simply solving a system of linear equations determined by f̃1 and It,
where the unknowns are the coefficients of g and h. (That this is indeed a linear system relies on

the fact that multiplying by f̃1 and reducing modulo It are both linear operations.) Solving such a
system can be done efficiently using basic linear algebra, and we omit the details.

We now explain why a solution to the Jump Problem is useful for us. Recall that we are hoping
to find the irreducible polynomial g1 such that f = g1 ·h1, where here h1 := g2 · . . . ·g`. The following
lemma shows that, given any solution (g, h) to the Jump Problem, we can find a non-trivial factor
of f containing g1 by computing gcd(f, g). (If f is irreducible, this gcd will give f .)

Lemma 1 If (g1, h1) is a solution to the Jump Problem with g1 irreducible, and (g2, h2) is any other
solution, and if t > d2, then g1|g2.

(Note that this also specifies the value of t we need to choose in step 3.) We will not prove
this lemma today. Instead we will introduce the resultant, which is a generally useful tool that in
particular will help us prove this lemma.

8-2

Before doing so, we briefly remark on how the above discussion differs in the case when R = Z.
Recall that when R = Z, we take the ideal I = pZ for a prime p. So, step 2 factors f ∈ Z[x]

as f = f1 · . . . · fk (mod p), and then step 3 lifts these to f = f̃1 · . . . · f̃k (mod pt). As before,

we know that f̃1 has small x-degree d < degx(f), and we again try to find a pair (g, h) such that

g = f̃1 ·h (mod pt). The only difference now is that, instead of requiring g to have minimal x-degree,

we require it to have coefficients with absolute value bounded by 2b
2

, where 2b is a bound on the
magnitude of f ’s coefficients. This change to the Jump Problem means that it no longer reduces to
solving a linear system, but we will see in the next lecture that it reduces to finding a short basis in
a certain lattice, and that the LLL algorithm solves this problem efficiently.

3 The resultant

In this section we introduce the resultant, an algebraic tool that will aid in the proof of Lemma 1.
To start, consider the following problem:

Given two polynomials A =

k∑
i=0

aix
i and B =

∑̀
i=0

bix
i in R[x],

decide if A and B have a common non-constant factor.

The resultant Resx(A,B) solves this problem. We will prove that it has the following properties.

1. Resx(A,B) ∈ R.

2. Resx(A,B) is a polynomial in the coefficients {ai}i≤k, {bi}i≤`.

3. Resx(A,B) is contained in the ideal generated by (A,B).

4. Resx(A,B) = 0 if and only if A and B have a common non-constant factor.

Note that we use the subscript x to indicate the variable under consideration. If we are working in
the ring R = F[y], as we will below, then the ai and bi coefficients are actually polynomials in y.

So, how is the resultant defined? Resx(A,B) is the determinant of the following (k+ `)× (k+ `)
matrix, known as the Sylvester matrix associated with A and B.

M(A,B) =



a0 0 · · · 0 b0 0 . . . 0
a1 a0 0 b1 b0 0

a2 a1
...

... b1
...

...
...

. . . a0 b`
...

. . . 0
ak ak−1 a1 0 b` b0
0 ak a2 0 0 b1
...

...
...

...
...

...
0 0 · · · ak 0 0 · · · b`


Resx(A,B) := det(M(A,B))

This already establishes properties 1 and 2 above, though we will look more closely at the second
in a moment. But first, a natural question: where does M(A,B) come from? Its motivation can be
found in the proof of the following lemma, which establishes property 4.

8-3

Lemma 2 Let G := gcd(A,B). Then, G is non-constant if and only if det(M(A,B)) = 0.

Proof Assume that G is non-constant. Then, A·(B/G)+B ·(−A/G) = 0, and thus there exist two
non-zero polynomials C :=

∑
i cix

i and D :=
∑
i dix

i such that AC + BD = 0, deg(C) < deg(B),
and deg(D) < deg(A). Then, defining the (column) vector v = (c0, . . . , c`−1, d0, . . . , dk−1) 6= 0, we
have M(A,B) · v = AC + BD = 0 and thus det(M(A,B)) = 0. This argument also holds in the
other direction, i.e. if det(M(A,B)) 6= 0 then there is no such v 6= 0 and so G must be constant.

We now note a few other facts about the resultant. Applying the following general lemma to
our matrix shows that the vector (Resx(A,B), 0, . . . , 0) is in the column span of M(A,B), which
establishes property 3.

Lemma 3 For all M ∈ Rn×n, the vector (det(M), 0, . . . , 0) is in the column span of M .

Proof M can be put in lower-triangular form by performing only column operations. Letting M
denote the triangularized matrix, we have det(M) =

∏
i≤nM ii. Finally, observe that the vector(∏

i≤nM ii, 0, . . . , 0
)

is in the column span of any triangular matrix M .

In the case when R = F[y], the following lemma bounds the y-degree of Resx(A,B).

Lemma 4 If A,B ∈ F[x, y] have total degree k and ` respectively, then Resx(A,B) ∈ F[y] has degree
at most k`.

Proof This is essentially a counting argument. Consider the degree of the (i, j)th element of
M(A,B):

deg(M(A,B)ij) ≤

{
k − i+ j, if j ≤ `
j − i, if j > `.

Therefore for every permutation σ : [k + `] → [k + `], deg
(∏

jM(A,B)σ(j),j

)
≤ k`, and so

Resx(A,B) = det(M(A,B)) is a sum of degree ≤ k` polynomials.

We conclude by showing how the resultant can be used to prove one direction of Bézout’s Theorem
in the plane.

Theorem 5 If A,B ∈ F[x, y] have total degree at most k and ` respectively, and they share more
than k` common zeros, then they have a common non-constant factor.

Proof We will show that if A and B have > k` common zeros, then Resx(A,B) = 0. Suppose
that (α1, β1), . . . , (αk`+1, βk`+1) are the common zeros. We know that Resx(A,B) is in the ideal
generated by A and B, so it must vanish on each of the βi. Because Resx(A,B) has y-degree ≤ k`
by Lemma 4, if each of the βi are distinct then Resx(A,B) must be identically zero. Of course,
the assumption that the βi are distinct is not justified. However, if we work over a large enough
extension field K ⊇ F, and perform the following linear transformation for a random θ ∈ K

(αi, βi) 7−→ (αi, βi + θ · αi)

then with non-zero probability the new βi will all be distinct, which again gives k`+1 distinct points
on which Resx(A,B) vanishes.

8-4

