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Today, we will continue our approach to factoring bivariate polynomials. We will first focus on
the tool of Hensel’s Lifting; and then describe how we perform the factoring.

1 Hensel’s Lifting

Suppose f(x, y) = g(x)h(x) (mod y). We wanted a factorization for higher powers of y: f(x, y) =
g̃(x, y)h̃(x, y) (mod y2k). Hensel’s Lifting says we can obtain this if g and h are “relatively prime,”
and that the g̃ and h̃ we obtain are essentially unique. Formally:

Lemma 1 (Hensel’s Lifting) If R is a ring, I ⊆ R is an ideal, and there exist f, g, h, a, b in R
such that

(H1) f = gh (mod I)

(H2) ag + bh = 1 (mod I).

Then, for every positive interger s that is a power of 2, there exist g̃, h̃ and ã, b̃ in R, such that

(C1) f = g̃h̃ (mod Is)

(C2) g̃ã + b̃h̃ = 1 (mod Is)

(C3) g = g̃ (mod I) and h = h̃ (mod I)

Furthermore, the solution satisfying the above three conditions is “unique” in the following sense:

Uniqueness: We say that an ideal J is special if for all all interger k, and a, b such that ab ∈ Jk,
there is an integer l such that a ∈ J l and b ∈ Jk−l.

Assume that I is special. Then, for every two solutions g1, h1 and g2, h2 satisfying contidions
C1 to C3, there exists u ∈ It, such that:

g2 = g1(1 + u) (mod Is), h2 = h1(1− u) (mod Is)

As we will see later, towards factoring a bivariate polynomial f ∈ Fq[x, y], we will apply the Hensel’s
lifting to R = Fq[x, y], I = (y) and a factorization of f mod I. When I = (y), f (mod y) is simply
a univariate polynomial on x over Fq, which we know how to factor from previous lectures. Next we
proceed to prove Lemma 1.
Proof We prove this lemma by induction.

Base Case s = 2: We first show that there exists g̃, h̃ and ã, b̃ satisfying C1 to C3, and then
establish the uniqueness of the solution. By condition H1 and H2, we have

f = gh + q, for some q ∈ I

ag + bh = 1 + r for some r ∈ I

Write g̃ = g + g1, h̃ = h + h1, for some g1, h1 ∈ I to be set. Then

g̃h̃ = gh + g1h + h1g + h1g1
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Since h1g1 ∈ I2, in order to satisfy condition C1, we want g1h+h1g +h1 = q (mod I2). To satisfy
this, set g1 = bq, h1 = aq, and get that g1h+h1g = q(bh+ ag) = q(1 + r), which equals to q modulo
I2 as required. By construction g̃ = g (mod I) and h̃ = h (mod I), satisfying condition C3. To
show that g̃ and h̃ are also relatively prime, observe that ag̃ + bh̃ = ag + bh + r′ = 1 + r + r′, for
some r′ ∈ I. Let r′′ = r + r′ ∈ I. Now we can take ã = a(1− r′′) and b̃ = b(1− r′′), and get that:

ãg̃ + b̃h̃ = (1− r′′)(ag̃ + bh̃) = (1− r′′)(1 + r′′) = 1− r′′2 = 1 (mod I2)

Now it remains to show that g̃, h̃ is the unique solution satisfying C1 to C3. That is, if g∗, h∗ is a
different solution satisfying C1 to C3, then there is u ∈ I such that g∗ = g̃(1 +u) and h∗ = h̃(1−u).
By contidion C3, we have g∗ = g̃ + g2 and h∗ = h̃ + h2 for some g2, h2 ∈ I (because, modulo I, we
know that g∗ = g = g̃ and h∗ = h = h̃). Therefore, we have:

g∗h∗ = g̃h̃ + g2h̃ + h2g̃ + g2h2

By condition C1, we know that g∗h∗ = f = g̃h̃ (mod I2). Thus, the above equation modulo I2

gives,
g2h̃ + h2g̃ = 0 (mod I2)

By condition C2, we have ãg̃ + b̃h̃ = 1 (mod I2). Therefore,

b̃(g2h̃ + h2g̃) = 0 (mod I2)

g2b̃h̃ + b̃h2g̃ = 0 (mod I2)

g2(1− ãg̃) + b̃h2g̃ = 0 (mod I2)

g2 = (ãg2 − b̃h2)g̃ (mod I2)

Let u = ãg2− b̃h2. Since g2 and h2 are all elements in I, so is u. Furthermore we have g∗ = g̃+g2 =
g̃(1 + u). Similarly, by symmetry, we obtain that

h2 = (b̃h2 − ãg2)h̃ (mod I2)

Therefore, h∗ = h̃(1− u). This concludes the proof for the base case.

Induction Step: Assume that for the case of s = t, there exist g0, h0 ∈ R[x] and a0, b0 ∈ It

satisfying conditions C1 to C3, and the solution to the three conditions is “unique”. We show that
for the case of s = 2t, we can construct g1, h1 ∈ R[x] and a1, b1 ∈ I2t satisfying conditions C1 to
C3, and the solution is also unique.

The existence of g1, h1, a1, b1 satisfying conditions C1 to C3 follows exactly the same proof as
in the base case. Therefore, we focus on the proof of uniqueness. Let g1, h2 be a different solution
from g1, h1. Then both g1 (mod It), h1 (mod It) and g2 (mod It), h2 (mod It) are solutions
satisfying C1 to C3 for the case of s = t. Then by the induction hypothesis, we have that there is a
u0 ∈ It/2 such that,

(g2 (mod It)) = (g1 (mod It))(1 + u0) (mod It)

(h2 (mod It)) = (h1 (mod It))(1− u0) (mod It)

This implies that
g2 = g1(1 + u0) (mod It)

h2 = h1(1− u0) (mod It)

Notice that this is differerent from the condition in the base case where any two solutions must equal
modulo I. Nevertheless, following the same argument, we can derive that there is an element u ∈ It

such that,
g2 = g1(1 + u0)(1 + u) (mod I2t)
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h2 = h1(1− u0)(1− u) (mod I2t)

Below we show that u0 is in fact an element in It, then

g2 = g1(1 + u0 + u + u0u) = g1(1 + u0 + u) (mod I2t)

h2 = h1(1− u0 − u + u0u) = h1(1− u0 − u) (mod I2t)

Thus g2 = g1(1 + u′) and h2 = h1(1− u′) for u′ = u0 + u ∈ It as desired.
To show that u0 ∈ It, consider:

g2h2 = g1h1(1− u2
0)(1− u2) (mod I2t)

g2h2 = g1h1(1− u2
0) (mod I2t) [as u ∈ It]

Since g1 and h1 are not elements in I, for the last euqation to hold, it must be the case that u0 ∈ It.
Therefore, we conclude the lemma.

2 Outline of Factoring, revisited

We now give a more complete outline for factoring bivariate polynomials.
Given a monic f(x, y) ∈ Fq[x, y], with total degree d, the factoring algorithm SPLIT proceeds

as follows:

1. If g = gcd(f, ∂f
∂x ) 6= 1, then output (g, f/g) and stop. Otherwise, continue the following steps.

2. Find y0 ∈ F such that f(x, y0) has no repeated factors. This can be done by computing

Res
(
f, ∂f

∂x

)
, and pluging in y0 = 1, 2, . . . until we find one that makes the resultant non-zero.

We claim that this will terminiate in at most d2 iterations, as Res
(
f, ∂f

∂x

)
is a polynomial in

y with degree at most d2. Futhermore, the first step ensures that f does not have repeated

roots; therefore, Res
(
f, ∂f

∂x

)
is not a zero polynomial. Hence it has at most d2 roots.

3. Put fy0
(x) = f(x, y) (mod (y − y0)) = f(x, y0) and factor it. This can be done by using the

factoring algorithm for univariate polynomial over F. Let g be an irreducable factor of fy0(x),
and h such that f = gh (mod (y − y0)).

4. Now we apply Hensel’s Lifting to obtain f = g1h1 (mod (y − y0)t) for a t ≈ d2

5. Next, from g1 we ask if we can find a nontrivial factor g̃ of f . This is done through the “Jump”
step, which tries to find polynomials g̃ and h̃ such that g̃ = g1h̃ (mod (y − y0)t), and g̃ has
small degrees in y (smaller than d) and minimal degree in x.

6. Finally, return g̃ and f/g̃.
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