
6.S897 Algebra and Computation March 14, 2012

Lecture 11
Lecturer: Madhu Sudan Scribe: TB Schardl

This lecture concludes our discussion of bivariate polynomial factorization. We first focus on
a couple remaining key ingredients to make the algorithm work. We then turn our attention to
multivariate polynomial factorization. First, we introduce the notion of representing the polynomial
as a black box. Using this representation, we then sketch the high level ideas of the factorization
algorithm. Our goal today is to wrap up the discussion of polynomial factorization and move on to
new topics by next lecture.

1 Factoring bivariate polynomials

Let us begin by reviewing the algorithm for factoring bivariate polynomials.

Split(f ∈ F[x, y],deg(f) = d):

0. Preprocess f to ensure it has no repeated factors.

If ∂f
∂x = 0 and ∂f

∂y = 0, then f = gp for some g ∈ F, and thus return g. To compute g,

notice that, if f =
∑
ij cijx

iyj , then g =
∑
ij c

1/p
ij xi/pyj/p. Because the exponents i/p and j/p

will be integers whenever cij is non-zero, g can be computed by calculating c
1/p
ij for each i, j.

Furthermore, each c
1/p
ij can be computed using the equation c

1/p
ij = c

q/p
ij .

Otherwise, if ∂f
∂x = 0, then evaluate Split(f(y, x), d), thereby swapping the variables x and y.

Finally, if g = gcd(f, ∂f∂x) 6= 1, then return (g, f/g) for reasons previously discussed.

1. Pick some β ∈ F such that f(x, β) has no repeated factors, and set f(x, y)←f(x, y + β).

2. Factor f = g1 · g2 · . . . · gk (mod y). Notationally, let g = g1 and h = g2 · . . . · gk. Make sure
g is irreducible and monic.

3. Lift f = g(t) · h(t) (mod yt), where t is chosen to be sufficiently large, i.e. t > d2.

4. Use g(t) to get information for an irreducible factor of f by jumping g(t) → g̃. This jump is
done by solving g̃ = g(t) · h̃ (mod yt) such that deg(g̃) ≤ d and degx(g̃) is minimal.

5. Return (g̃, f/g̃).

We now justify step 5, or in particular, that g̃ divides f . To prove this property, we argue that
g̃ is one of the factors of f through a sequence of small claims.

Before arguing this sequence of claims, let us establish some notation. First, we write f =
f1 ·f2 · . . . ·f`, where fi is irreducible for 1 ≤ i ≤ `. As previous lectures have shown, after computing
f mod y, each fi may split further into factors fi = fi1 ·fi2 · . . . ·fini

(mod y), where each fij ∈ F[x]
is irreducible.

With this notation, we start making claims to help us show the validity of step 5. First, we argue
that the g computed from factoring f mod y is a factor of one of the fi’s.

Claim 1 The factor g = fij for some i, j.

Proof This claim follows from unique factorization.

Next, we argue that the g̃ term computed from the jump step is one of the factors of f .

11-1

Claim 2 If g = fij for some i, j, then g̃ = fi for the same i.

We argue this claim through a sequence of smaller steps. In particular, we consider a hypothetical
Hensel lifting, and we first argue that the lift of the factor fi of f is closely related to the lift of f .

Claim 3 Suppose we lift fi = fij ·
∏
m6=j fim (mod y). Let g = fij and h0 =

∏
m 6=j fim, so

fi = g · h0 (mod y). After lifting, we have fi = g
(t)
0 · h(t)

0 (mod yt). Then there exists some

polynomial u ∈ F[x, y] such that g(t) = g
(t)
0 (1 + u · yt/2), or equivalently, g(t)(1 − u · yt/2) = gt0

(mod yt).

Proof The proof follows from the uniqueness of Hensel liftings (see last lecture). We know that
f = g(t) · h(t) (mod yt). Furthermore, we have

f =
∏
m

fm

= fi ·
∏
m 6=i

fm

= g
(t)
0 · h

(t)
0 ·

∏
m6=i

fm (mod yt) .

We now argue that g̃ is related to the factor fi. This argument uses a common paradigm in
properties of these algorithms. In this paradigm, we first show that some solution to the problem is
valid, and then we show that there is little room to maneuver around the valid solution.

Using this paradigm, let us first show that there is some solution to the jumping problem such
that g̃ = fi.

Claim 4 There exists some h̃0 such that (fi, h̃0) is a valid solution to the jump problem, ignoring
minimality.

Proof We have that fi = g
(t)
0 · h

(t)
0 (mod yt). From the previous claim, this can be rewritten as

fi = g(t) · (1− u · yt/2)h
(t)
0 (mod yt). Letting g̃ = g(t) and h̃0 = (1− u · yt/2)h

(t)
0 proves the claim.

Finally, we show that g̃ and fi share a common factor. Because fi is irreducible, this implies
g̃ ∼ fi as desired.

Claim 5 Suppose both (fi, h̃0) and (g̃, h̃) are both valid solutions (with small degree) to the jump
problem. Then fi and g̃ share a common factor.

Proof We show this claim by examining the resultant Resx(fi, g̃) and showing that it must
be 0, which implies that fi and g̃ share a factor. To show that Resx(fi, g̃) = 0, we assume the
contrapositive in order to arrive at a contradiction.

Suppose that fi and g̃ have no common factor. As a result, their resultant R(y) = Resx(fi, g̃) is
nonzero, has degree at most d2, and is in the ideal of (g̃, fi). Consequently, there exist polynomials
A,B ∈ F[x, y] such that R = A · fi +B · g̃. Substituting in fi = g(t) · h̃0 (mod yt) and g̃ = g(t) · h̃
(mod yt) and rearranging terms produces the equation

R = g(t)(A · h̃0 +B · h̃) (mod yt) .

We now notice two things. First, the polynomial g(t) is a monic polynomial in x. Second, because
the highest degree term in (A·h̃0 +B ·h̃) must be nonzero, it must contain a highest degree term in x.

11-2

Consequently, the highest degree x term cannot be eliminated to get R(y), and thus this scenario
cannot happen.

As an aside, notice that computing the resultant eliminates a variable, which is a useful property
for a variety of algebraic computations. For example, suppose we wish to find common 0’s between
two bivariate polynomials. One method to find such 0’s is to take the resultant of those polynomials,
find solutions where the resultant is 0, and then use those solutions in y to look for 0’s in x. We
shall use and expand on this idea in future lectures.

2 Factoring polynomials over the integers

We now briefly consider the problem of factoring a polynomial f over the integers. This problem is
soluble using a similar algorithm to Split for factoring bivariate polynomials, substituting a chosen
prime p in place of y. The modified algorithm is summarized below.

Split-Z(f ∈ Z[x],deg(f) = d):

0. Preprocess f to ensure it has no repeated factors.

1. Pick a prime p ∈ Z such that f has no repeated factors modulo p. Factor f = g · h (mod p).

2. Lift f = g(t) · h(t) (mod pt), where t is chosen to be sufficiently large, i.e. t > d2.

3. Use g(t) to get information for an irreducible factor of f by jumping g(t) → g̃. This jump is
done by solving g̃ = g(t) · h̃ (mod pt) such that deg(g̃) ≤ d and degx(g̃) is minimal.

4. Return (g̃, f/g̃).

One question regarding the validity of this algorithm is, “How large must pt be?” The answer
to this question depends on the size of the coefficients of the original polynomial f . Once we bound
the size of these coefficients, the resultant will behave as expected, and the rest of the algorithm
follows.

We now sketch the arguments for bounding the size of the coefficients of the factors, thereby
bounding the size of pt, in terms of the coefficients of f . Consider a polynomial f ∈ Z[x], written
as f =

∑
i fix

i, and suppose that |fi| ≤ 2b for all i. For another polynomial g that divides f , we
bound the size of the coefficients of g by justifying two claims. First, we argue that the complex
roots are “small.”

Claim 6 All complex roots of f are bounded by n · 2b.

Sketch of Proof Suppose that some root α of f is large, or formally, suppose |α| > n · 2b. Then

the first term in the expression of f is fn(n · 2b)n >
∑n−1
i=0 fi(n · 2b)i.

Next, we argue that, if the complex roots of g are small, then the coefficients of g are bounded
in terms of the coefficients of f .

Claim 7 If the complex roots of g are bounded, then so are the coefficients of g.

Sketch of Proof Assume that g is monic, and let g ∈ Q[x]. Suppose g is split into complex
terms. In order to transform the factors g into factors of f ∈ Z[x], we must multiply these factors
by some integer, whose size is bounded by the largest term in f . Hence, the coefficients of g are
bounded in terms of the coefficients of f .

11-3

3 Factoring multivariate polynomials

To conclude, let us turn our attention to the problem of factoring polynomials of more than 2
variables. One idea to approach this problem is apply a similar algorithm to Split, using step 2
to eliminate one variable of the polynomial at a time until we are left with factoring a univariate
polynomial. This scheme introduces blowup, however, in both time and the representation of the
polynomials involved for each variable, and while this idea works for polynomials over a constant
number of variables, for polynomials over more variables this blowup can be problematic. It turns
out that several alternative schemes for factoring multivariate polynomials introduce similarly large
blow-ups in time and representation, because these algorithms explicitly represent the terms of the
polynomial.

An alternative representation of multivariate polynomials as a black box allows us to factor more
efficiently. In this representation, a polynomial is represented by some black box P , which takes
as input some assignment (α1, . . . , αn) of the n variables and produces P (α1, . . . , αn). With this
representation, the goal of factoring the polynomial P is to produce the set of black boxes for the
factors of P .

Assuming we use a black box representation of polynomials, the rough idea for factoring mul-
tivariate polynomials works as follows. Consider a polynomial P (y1, . . . , yn) that is the prod-
uct of k irreducible factors P = P1 · P2 · . . . · Pk. Suppose the polynomial is “nice” in that
P (y1, 0, . . . , 0) =

∏
i Pi(y1, 0, . . . , 0), where the Pi(y1, 0, . . . , 0)’s are irreducible and pairwise dis-

tinct. While this univariate polynomial is more convenient to work with, it does not immediately
allow us to compute P (α1, . . . , αn). To address this issue, we instead work with the bivariate polyno-
mial P̃ (t1, t2) = P (t1+α1t2, α2t2, α3t2, . . . , αnt2), which we can use to compute either P (y1, 0, . . . , 0)
or P (α1, . . . , αn) by choosing t1 and t2 appropriately. Notice that, because P splits into k factors,
P̃ also splits into k factors. Furthermore, P̃ does not split into more factors, since setting t2 = 0
produces a polynomial with k factors.

Assuming P is a nice polynomial, we can factor the black box polynomial P as follows.

0. In preprocessing, factor P (y1, 0, . . . , 0) =
∏
i Pi(y1, 0, . . . , 0). Notice that P (y1, 0, . . . , 0) can

be represented explicitly, because it is a univariate polynomial.

1. Compute P̃ (t1, t2) = P (t1 + α1t2, α2t2, . . . , αnt2) by interpolation.

2. Factor P̃ into factors P̃ = Q1 ·Q2 · . . . ·Q`.

3. Find j such that Qj(t1, 0) = P1(y1, 0, . . . , 0). Exactly one such Qj exists, since all pairwise
Pi’s are pairwise distinct and irreducible. Return Qj(0, 1).

This procedure relies on P being a nice polynomial, i.e. a polynomial whose factors can be
discovered by considering a single line. A natural question to ask is, “What are the chances that
we get such a nice polynomial?” Unfortunately, there are some polynomials that are irreducible but
can be factored along any line. Consequently, this approach seems doomed to failure.

It turns out, however, that we can use a similar approach to factoring multivariate polynomials
by considering a plane instead of a line. According to the Hilbert Irreducibility Theorem (which
is really due to Kaltofen), if P ∈ F[y1, . . . , yn] is irreducible, then we have

Prᾱ,β̄,γ̄∈Fn

{
Pᾱ,β̄,γ̄(t1, t2) = P (ᾱ+ t1β̄ + t2γ̄) is reducible

}
≤ deg(P)4/ |F| ,

where
{
ᾱ+ t1β̄ + t2γ̄ | t1, t2 ∈ F

}
represents the surface. Applying this theorem, we can adapt our

earlier technique by preprocessing the black box polynomial P along a random plane to produce an
explicitly represented trivariate polynomial, and then applying our previous Split algorithm to find
factors.

11-4

