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1 Today’s Problem: Primality Testing

Given an n-bit integer N , output YES if n is prime and NO otherwise.

This is one of the most basic questions about numbers, with the following history.

• By definition Prime ∈ coNP, because the prime decomposition is a short certificate for a number
that is not prime.

• [Pratt’75] showed that Prime ∈ NP. The Pratt certificate of a number N being prime, is by
looking at all prime factor q of N − 1 (which will be proved recursively), and giving some a such
that a(N−1)/q 6≡ 1 (mod N) for all such q’s. This proof is of length polylogN .

• The subsequent discoveries by [Solovay-Strassen’70s] [Miller-Rabin’70s] put Prime in coRP. This
algorithm uses the fact that if there exists some a, k such that a2k ≡ 1 (mod n) but ak 6≡ ±1 (mod n)
then N is composite. Moreover, the probabilistic algorithm picks a at random, and with > 1/2
probability there will be some k satisfying such compositeness criterion if N is composite.

• [Goldwassar-Killian’86] [Adleman-Huang’87] used algebraic (elliptic curve) techniques and proved
that Prime ∈ RP.

• In 2002, Agarwal, Kayal, and Saxena finally put Prime in P, and this will be the main topic of
today.

2 Prelude: Agarwal-Biswas Probabilistic Testing

Lemma 1 For all a such that (a,N) 6= 1,

N is a prime =⇒ (x + a)N ≡ xN + a (mod N) =⇒ N is a prime power.

Proof The first “=⇒” is easy. For the second one, if N = B · C and (B,C) = 1, then after some
careful calculation one can verify that

(
N
B

)
≡ C 6≡ 0 (mod N). This means, the coefficient for the xB

term does not equal to zero in the expansion of (x + a)N =
∑N

i=0 x
iaN−i

(
N
i

)
.

The lemma reduces our number theoretical question to an algebraic question of checking whether
(x + a)N ≡ xN + a (mod N). However, we cannot write down this big expansion explicitly, because we
want an algorithm that runs in time O(poly(n)) = O(polylogN). [Agarwal-Biswas’99] then proposed the
following test:

• pick a monic polynomial Q ∈ ZN [x] of degree polylogN at random; then

• verify if (x + a)N ≡ xN + a (mod Q).

This is an efficient algorithm because the degree of Q is small and we can use power method to
compute (x + a)N mod Q in polylogN time. The correctness can be verified using the following two
properties:
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• With probability at least 1
degQ , Q is irreducible over mod N . This is because letting d = degQ,

xqd − x =
∏

(all irred. polys. of degree dividing d) ,

and thus counting the degree on both sides we have at least qd

d irreducible polynomials of degree
dividing d, and since there are a total of qd choices for monic polynomials of Q over Fp, at least
with probability 1

d we will get a polynomial Q that is irreducible over Fp, and then of course Q is
also irreducible module N .

• Conditioning on Q being irreducible, the probability that (x + a)N ≡ xN + a (mod Q) if N is
composite is very very small due to the Chinese Reminder Theorem. This is because, if (x+a)N ≡
xN +a (mod Q) holds for many polynomials Q1, Q2, . . . , Qt’s, then the congruence also holds mod-
ule lcm(Q1, Q2, . . . , Qt) due to Chinese Reminder Theorem, but when deg(lcm(Q1, Q2, . . . , Qt))
exceeds N we will have (x + a)N ≡ xN + a (mod N) as well because the degree on both sides are
only N , contradicting the fact that N is composite.

3 Derandomization: Agarwal-Kayal-Saxena Primality Testing

[Agarwal-Kayal-Saxena’02] considered the nice form Q(x) = xr−1 for some nice prime r = Θ(polylogN),
and their primality testing is as follows:

• Pick some prime r = Θ(polylogN).

• Pick A = {1, 2, . . . , polylogN}.
• Verify if N = mt for integer t, and output NO if this happens.

(By enumerating all possible choices of t and computing m using binary search for each t.)

• Verify if ∃a ∈ A divides N , and output NO if this happens.

• Verify if for all a ∈ A, we have (x + a)N ≡ xN + a (mod N, xr − 1). Output YES if this is true,
and NO if there exists some a ∈ A that fails the test.

(The proof of AKS (to be shown below) is quite a novel one. Prof. Madhu Sudan claims no such proof
was seen before in either the CS or number theory literature.)

Notice that R := Z[x]/(N, xr − 1) is not a field, because it is module N which is not a prime, and
module xr − 1 which might not be irreducible. In fact, if we define p to be any prime divisor of N , we
can let L := Z[x]/(p, xr − 1), while identities in R imply these in L. We can go another step further,
by letting h(x) to be any irreducible factor of xr−1

x−1 in Fp[x], and define K := Z[x]/(p, h(x)). Now, K
is finally a field, and although R is the ring we are performing the primality testing, K is where we are
going to work on the proof. Notice that identities in R also hold in K.

Proof overview: The main idea of the proof is to find a large collection of polynomials F ⊆ Z[x] that,
when viewed as elements of L satisfy several “semi”-nice “near”-algebraic conditions (called introversion
below), assuming N passes the AKS test. The key idea in AKS is to convert this “semi”-nice “near”-
algebraic conditions into a “pure” algebraic one, i.e., in the form of a non-zero polynomial P ∈ K[z]
such that every element of F , when viewed as an element of K, is a zero of P. This conversion is neat in
that P has low-degree if (and potentially only if) N is not a prime power. This leads to a contradiction
because P now has many distinct zeroes (namely appropriately chosen elements of F) while its degree
is small! (Note that if N had been a prime, the degree of P would have been much larger and so the
presence of so many zeroes would be perfectly OK.)

Definition 2 (Introversion) We say that f(x) ∈ L is introverted for m if f(xm) ≡ f(x)m in L.
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Proposition 3

1. For any a ∈ A, f(x) = x + a is introverted for m = N (if N passes the test);

2. for all f(x) ∈ L, f is introverted for m = p;

3. if f(x), g(x) ∈ L are both introverted for m, then f(x) · g(x) is introverted for m; and

4. if f(x) ∈ L is introverted for both a and b, then f(x) is also introverted for a · b.

Proof The first three propositions are trivial, so we only prove the last one. Starting from:

f(x)a ≡ f(xa) (mod xr − 1) ,

we have:
f(zb)a ≡ f(zba) (mod zbr − 1) .

Now, since zr − 1|zbr − 1, we also have:

f(zb)a ≡ f(zba) (mod zr − 1) ,

and this is one place (and we will see another place shortly) that we have specific reason to use poly-
nomials of the form xr − 1; in general, it may not be the case that h(z)|h(zb). We have not used any
property of r yet. At last, we have:

f(z)ba = f(zb)a ≡ f(zba) (mod zr − 1) .

Proposition 4 If f(x) ∈ L is introverted for m1 and m2 while m1 = m2 (mod r), then f(x)m1 =
f(x)m2 .

Proof f(x)m1 = f(xm1) = f(xm2) = f(x)m2 and the second equality is because m1 ≡ m2 (mod r)
and we are in the ring module xr − 1.

3.1 High Level Ideas for the Analysis

Now using above propositions, we want to find

• a large set F of polynomials, even when viewed module h(x), and

• two small integers m1 and m2 satisfying m1 = m2 (mod r), such that for any f(x) ∈ F , f is
introverted for both m1 and m2.

If we found such m1,m2, then all f ∈ F are roots to polynomial P(z) := zm1 − zm2 , and although
f ∈ L and L is not a field, but it is contained in K which is a field, so P(z) ∈ K[z]. Now notice that F
is a large set of zeros of P(z), so if we had |F| > max{m1,m2} we would have a contradiction.

3.2 Details

A very natural set F to consider is, for some fixed t, let

Ft :=
{ ∏

a∈A
(x + a)da

∣∣∣∑
a∈A

da ≤ t
}

.
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Then, |Ft| =
(
t+|A|
|A|
)
. If we choose t = |A| we always have |Ft| ≥ 2t being a large set. Notice that we

still need to make sure that all polynomials in Ft are distinct module h(x), but we will worry about this
later.

Now, how to make m1 and m2 small? Recall from Proposition 3 that all polynomials in Ft are
introverted for all numbers in {N iP j |0 ≤ i ≤

√
r, 0 ≤ j ≤

√
r}. In fact, since this set has more than r

elements we can find two distinct m1,m2 ≤ N2
√
r such that all polynomials in Ft are introverted for m1

and m2 and m1 ≡ m2 (mod r).1

At last, we use the following powerful lemma

Lemma 5 (Fourry’80s) ∃ prime r = O(polylogN) s.t. for sufficiently large p, deg h(x) > r2/3.

Using the above lemma, if we pick t = deg h − 1 for Ft, then |Ft| ≥ 2r
2/3

and it contains only distinct
polynomials module h(x). Recall that m1,m2 ≤ 2

√
r logN , so this is sufficient to give the contradiction

and is indeed the original proof. We emphasize here that one needs to check all small r’s because the
Fourry lemma does not give an explicit construction for such prime r.

3.3 Improved Analysis

We will now potentially choose t > deg h, but still try to argue that elements in Ft are distinct module
h(x). Let us define

T =
{
N ipj (mod r)

∣∣ i, j ∈ Z≥0
}

,

and define l = |T | ≤ r. We know that all polynomials in F∞ are introverted for any m ∈ T . Now, let us
consider a specific one Fl−1, and will show that

• elements of Fl−1 are all distinct module h(x) (which will be proved in Lemma 6).

• m1,m2 ≤ N2
√
l (using similar proof as before), such that m1 ≡ m2 (mod r) and all polynomials

in Fl−1 are introverted for m1 and m2.

Now if we let |A| = l − 1, we can lower bound |Fl−1| =
(
l−1+|A|
|A|

)
≥ 2l−1, and we will have a similar

contradiction as before if 2l−1 > N2
√
l. This latter inequality will always be true when l = |T | =

Ω(log2 N), to be shown in Lemma 7.

3.4 Two Technical Lemmas

Lemma 6 Suppose f 6= g and f, g ∈ Fl−1 are introverted with respect to m1, . . . ,ml (all distinct mod r).
Then f 6≡ g (mod h(x)).

Proof We can view f(z), g(z) ∈ Fp[z] as f(z), g(z) ∈ K[z] because Fp ⊆ K. If f(x) ≡ g(x)
(mod h(x)), then x ∈ K is a root of f(z) − g(z) which is a non-zero polynomial with degree no more
than l − 1.

Now using introversion, we also have f(xm) = f(x)m = g(x)m = g(xm) for each m ∈ T so there
are at least l roots to f(z) − g(z), so there must be true that xmi ≡ xmj (mod h(x)) for some distinct
mi,mj ∈ T . In such a case, we have both

xmi−mj − 1 ≡ 0 (mod h(x))

xr − 1 ≡ 0 (mod h(x))

(This is another reason for our choice of polynomials like xr−1). We therefore have that xgcd(mi−mj ,r)−
1 ≡ 0 (mod h(x)), giving x− 1 ≡ 0 (mod h(x)) but this is against our choice of h(x).

1Notice that if we just look at all N i we can get Nr naively, but using p we can benefit.
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Lemma 7 There exists prime r ≤ O(k2 logN) such that∣∣{N i (mod r)
∣∣ i}∣∣ ≥ k .

Notice that by choosing choosing k = log2 N we have l = |T | ≥
∣∣{N i (mod r)

∣∣ i}∣∣ ≥ log2 N .

Proof [not provided in class but can be found in prenotes]
Suppose this is not true for some prime r, that is

∣∣{N i (mod r)
∣∣ i}∣∣ < k, then r must divide the

difference between N i and N j for some 0 ≤ i, j ≤ k − 2, and therefore:

r
∣∣∣ M :=

k−2∏
i=1

(N i − 1) , and M ≤ Nk2

.

However, if this is true for all prime r that is below m, then we have∏
pi≤m, pi is prime

pi ≤M ≤ Nk2

.

But this contradicts with Corollary 9 below, when m = Ω(k2 logN).

Theorem 8 (Weak Prime Number Theorem)∣∣∣{prime number ≤ 2m + 1
}∣∣∣ ≥ m

log4(2m + 1)
.

Proof Ommited, but it uses the fact that lcm(1, 2, . . . , 2m + 1) ≥ 4m. See the prenotes.

Corollary 9 There exists some constant c > 1 such that∏
pi≤m, pi is prime

pi > cm .
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