## 1 Today's Problem: Primality Testing

Given an $n$-bit integer $N$, output YES if $n$ is prime and NO otherwise.
This is one of the most basic questions about numbers, with the following history.

- By definition Prime $\in$ coNP, because the prime decomposition is a short certificate for a number that is not prime.
- [Pratt'75] showed that Prime $\in$ NP. The Pratt certificate of a number $N$ being prime, is by looking at all prime factor $q$ of $N-1$ (which will be proved recursively), and giving some $a$ such that $a^{(N-1) / q} \not \equiv 1 \quad(\bmod N)$ for all such $q$ 's. This proof is of length polylog $N$.
- The subsequent discoveries by [Solovay-Strassen'70s] [Miller-Rabin'70s] put Prime in coRP. This algorithm uses the fact that if there exists some $a, k$ such that $a^{2 k} \equiv 1(\bmod n)$ but $a^{k} \not \equiv \pm 1(\bmod n)$ then $N$ is composite. Moreover, the probabilistic algorithm picks $a$ at random, and with $>1 / 2$ probability there will be some $k$ satisfying such compositeness criterion if $N$ is composite.
- [Goldwassar-Killian'86] [Adleman-Huang'87] used algebraic (elliptic curve) techniques and proved that Prime $\in$ RP.
- In 2002, Agarwal, Kayal, and Saxena finally put Prime in P, and this will be the main topic of today.


## 2 Prelude: Agarwal-Biswas Probabilistic Testing

Lemma 1 For all a such that $(a, N) \neq 1$,

$$
N \text { is a prime } \Longrightarrow(x+a)^{N} \equiv x^{N}+a \quad(\bmod N) \Longrightarrow N \text { is a prime power. }
$$

Proof The first " $\Longrightarrow$ " is easy. For the second one, if $N=B \cdot C$ and $(B, C)=1$, then after some careful calculation one can verify that $\binom{N}{B} \equiv C \not \equiv 0(\bmod N)$. This means, the coefficient for the $x^{B}$ term does not equal to zero in the expansion of $(x+a)^{N}=\sum_{i=0}^{N} x^{i} a^{N-i}\binom{N}{i}$.

The lemma reduces our number theoretical question to an algebraic question of checking whether $(x+a)^{N} \equiv x^{N}+a(\bmod N)$. However, we cannot write down this big expansion explicitly, because we want an algorithm that runs in time $O(\operatorname{poly}(n))=O(\operatorname{polylog} N)$. [Agarwal-Biswas'99] then proposed the following test:

- pick a monic polynomial $Q \in \mathbb{Z}_{N}[x]$ of degree polylog $N$ at random; then
- verify if $(x+a)^{N} \equiv x^{N}+a \quad(\bmod Q)$.

This is an efficient algorithm because the degree of $Q$ is small and we can use power method to compute $(x+a)^{N} \bmod Q$ in polylog $N$ time. The correctness can be verified using the following two properties:

- With probability at least $\frac{1}{\operatorname{deg} Q}, Q$ is irreducible over $\bmod N$. This is because letting $d=\operatorname{deg} Q$,

$$
x^{q^{d}}-x=\prod(\text { all irred. polys. of degree dividing } d),
$$

and thus counting the degree on both sides we have at least $\frac{q^{d}}{d}$ irreducible polynomials of degree dividing $d$, and since there are a total of $q^{d}$ choices for monic polynomials of $Q$ over $\mathbb{F}_{p}$, at least with probability $\frac{1}{d}$ we will get a polynomial $Q$ that is irreducible over $\mathbb{F}_{p}$, and then of course $Q$ is also irreducible module $N$.

- Conditioning on $Q$ being irreducible, the probability that $(x+a)^{N} \equiv x^{N}+a(\bmod Q)$ if $N$ is composite is very very small due to the Chinese Reminder Theorem. This is because, if $(x+a)^{N} \equiv$ $x^{N}+a(\bmod Q)$ holds for many polynomials $Q_{1}, Q_{2}, \ldots, Q_{t}$ 's, then the congruence also holds module $\operatorname{lcm}\left(Q_{1}, Q_{2}, \ldots, Q_{t}\right)$ due to Chinese Reminder Theorem, but when $\operatorname{deg}\left(\operatorname{lcm}\left(Q_{1}, Q_{2}, \ldots, Q_{t}\right)\right)$ exceeds $N$ we will have $(x+a)^{N} \equiv x^{N}+a(\bmod N)$ as well because the degree on both sides are only $N$, contradicting the fact that $N$ is composite.


## 3 Derandomization: Agarwal-Kayal-Saxena Primality Testing

[Agarwal-Kayal-Saxena'02] considered the nice form $Q(x)=x^{r}-1$ for some nice prime $r=\Theta(\operatorname{polylog} N)$, and their primality testing is as follows:

- Pick some prime $r=\Theta($ poly $\log N)$.
- Pick $A=\{1,2, \ldots$, polylog $N\}$.
- Verify if $N=m^{t}$ for integer $t$, and output NO if this happens.
(By enumerating all possible choices of $t$ and computing $m$ using binary search for each $t$.)
- Verify if $\exists a \in A$ divides $N$, and output NO if this happens.
- Verify if for all $a \in A$, we have $(x+a)^{N} \equiv x^{N}+a \quad\left(\bmod N, x^{r}-1\right)$. Output YES if this is true, and NO if there exists some $a \in A$ that fails the test.
(The proof of $A K S$ (to be shown below) is quite a novel one. Prof. Madhu Sudan claims no such proof was seen before in either the CS or number theory literature.)

Notice that $R:=\mathbb{Z}[x] /\left(N, x^{r}-1\right)$ is not a field, because it is module $N$ which is not a prime, and module $x^{r}-1$ which might not be irreducible. In fact, if we define $p$ to be any prime divisor of $N$, we can let $L:=\mathbb{Z}[x] /\left(p, x^{r}-1\right)$, while identities in $R$ imply these in $L$. We can go another step further, by letting $h(x)$ to be any irreducible factor of $\frac{x^{r}-1}{x-1}$ in $\mathbb{F}_{p}[x]$, and define $K:=\mathbb{Z}[x] /(p, h(x))$. Now, $K$ is finally a field, and although $R$ is the ring we are performing the primality testing, $K$ is where we are going to work on the proof. Notice that identities in $R$ also hold in $K$.

Proof overview: The main idea of the proof is to find a large collection of polynomials $\mathcal{F} \subseteq \mathbb{Z}[x]$ that, when viewed as elements of $L$ satisfy several "semi"-nice "near"-algebraic conditions (called introversion below), assuming $N$ passes the AKS test. The key idea in AKS is to convert this "semi"-nice "near"algebraic conditions into a "pure" algebraic one, i.e., in the form of a non-zero polynomial $\mathcal{P} \in K[z]$ such that every element of $\mathcal{F}$, when viewed as an element of $K$, is a zero of $\mathcal{P}$. This conversion is neat in that $\mathcal{P}$ has low-degree if (and potentially only if) $N$ is not a prime power. This leads to a contradiction because $\mathcal{P}$ now has many distinct zeroes (namely appropriately chosen elements of $\mathcal{F}$ ) while its degree is small! (Note that if $N$ had been a prime, the degree of $\mathcal{P}$ would have been much larger and so the presence of so many zeroes would be perfectly OK.)

Definition 2 (Introversion) We say that $f(x) \in L$ is introverted for $m$ if $f\left(x^{m}\right) \equiv f(x)^{m}$ in $L$.

## Proposition 3

1. For any $a \in A, f(x)=x+a$ is introverted for $m=N$ (if $N$ passes the test);
2. for all $f(x) \in L$, $f$ is introverted for $m=p$;
3. if $f(x), g(x) \in L$ are both introverted for $m$, then $f(x) \cdot g(x)$ is introverted for $m$; and
4. if $f(x) \in L$ is introverted for both $a$ and $b$, then $f(x)$ is also introverted for $a \cdot b$.

Proof The first three propositions are trivial, so we only prove the last one. Starting from:

$$
f(x)^{a} \equiv f\left(x^{a}\right) \quad\left(\bmod x^{r}-1\right)
$$

we have:

$$
f\left(z^{b}\right)^{a} \equiv f\left(z^{b a}\right) \quad\left(\bmod z^{b r}-1\right)
$$

Now, since $z^{r}-1 \mid z^{b r}-1$, we also have:

$$
f\left(z^{b}\right)^{a} \equiv f\left(z^{b a}\right) \quad\left(\bmod z^{r}-1\right)
$$

and this is one place (and we will see another place shortly) that we have specific reason to use polynomials of the form $x^{r}-1$; in general, it may not be the case that $h(z) \mid h\left(z^{b}\right)$. We have not used any property of $r$ yet. At last, we have:

$$
f(z)^{b a}=f\left(z^{b}\right)^{a} \equiv f\left(z^{b a}\right) \quad\left(\bmod z^{r}-1\right) .
$$

Proposition 4 If $f(x) \in L$ is introverted for $m_{1}$ and $m_{2}$ while $m_{1}=m_{2}(\bmod r)$, then $f(x)^{m_{1}}=$ $f(x)^{m_{2}}$.

Proof $\quad f(x)^{m_{1}}=f\left(x^{m_{1}}\right)=f\left(x^{m_{2}}\right)=f(x)^{m_{2}}$ and the second equality is because $m_{1} \equiv m_{2}(\bmod r)$ and we are in the ring module $x^{r}-1$.

### 3.1 High Level Ideas for the Analysis

Now using above propositions, we want to find

- a large set $\mathcal{F}$ of polynomials, even when viewed module $h(x)$, and
- two small integers $m_{1}$ and $m_{2}$ satisfying $m_{1}=m_{2}(\bmod r)$, such that for any $f(x) \in \mathcal{F}, f$ is introverted for both $m_{1}$ and $m_{2}$.

If we found such $m_{1}, m_{2}$, then all $f \in \mathcal{F}$ are roots to polynomial $\mathcal{P}(z):=z^{m_{1}}-z^{m_{2}}$, and although $f \in L$ and $L$ is not a field, but it is contained in $K$ which is a field, so $\mathcal{P}(z) \in K[z]$. Now notice that $\mathcal{F}$ is a large set of zeros of $\mathcal{P}(z)$, so if we had $|\mathcal{F}|>\max \left\{m_{1}, m_{2}\right\}$ we would have a contradiction.

### 3.2 Details

A very natural set $\mathcal{F}$ to consider is, for some fixed $t$, let

$$
\mathcal{F}_{t}:=\left\{\prod_{a \in A}(x+a)^{d_{a}} \mid \sum_{a \in A} d_{a} \leq t\right\}
$$

Then, $\left|\mathcal{F}_{t}\right|=\binom{t+|A|}{|A|}$. If we choose $t=|A|$ we always have $\left|\mathcal{F}_{t}\right| \geq 2^{t}$ being a large set. Notice that we still need to make sure that all polynomials in $\mathcal{F}_{t}$ are distinct module $h(x)$, but we will worry about this later.

Now, how to make $m_{1}$ and $m_{2}$ small? Recall from Proposition 3 that all polynomials in $\mathcal{F}_{t}$ are introverted for all numbers in $\left\{N^{i} P^{j} \mid 0 \leq i \leq \sqrt{r}, 0 \leq j \leq \sqrt{r}\right\}$. In fact, since this set has more than $r$ elements we can find two distinct $m_{1}, m_{2} \leq N^{2 \sqrt{r}}$ such that all polynomials in $\mathcal{F}_{t}$ are introverted for $m_{1}$ and $m_{2}$ and $m_{1} \equiv m_{2}(\bmod r) .{ }^{1}$

At last, we use the following powerful lemma
Lemma 5 (Fourry'80s) $\exists$ prime $r=O(\operatorname{polylog} N)$ s.t. for sufficiently large $p$, $\operatorname{deg} h(x)>r^{2 / 3}$.
Using the above lemma, if we pick $t=\operatorname{deg} h-1$ for $\mathcal{F}_{t}$, then $\left|\mathcal{F}_{t}\right| \geq 2^{r^{2 / 3}}$ and it contains only distinct polynomials module $h(x)$. Recall that $m_{1}, m_{2} \leq 2^{\sqrt{r} \log N}$, so this is sufficient to give the contradiction and is indeed the original proof. We emphasize here that one needs to check all small $r$ 's because the Fourry lemma does not give an explicit construction for such prime $r$.

### 3.3 Improved Analysis

We will now potentially choose $t>\operatorname{deg} h$, but still try to argue that elements in $\mathcal{F}_{t}$ are distinct module $h(x)$. Let us define

$$
T=\left\{N^{i} p^{j}(\bmod r) \mid i, j \in \mathbb{Z}^{\geq 0}\right\}
$$

and define $l=|T| \leq r$. We know that all polynomials in $\mathcal{F}_{\infty}$ are introverted for any $m \in T$. Now, let us consider a specific one $\mathcal{F}_{l-1}$, and will show that

- elements of $\mathcal{F}_{l-1}$ are all distinct module $h(x)$ (which will be proved in Lemma 6).
- $m_{1}, m_{2} \leq N^{2 \sqrt{l}}$ (using similar proof as before), such that $m_{1} \equiv m_{2}(\bmod r)$ and all polynomials in $\mathcal{F}_{l-1}$ are introverted for $m_{1}$ and $m_{2}$.

Now if we let $|A|=l-1$, we can lower bound $\left|\mathcal{F}_{l-1}\right|=\binom{l-1+|A|}{|A|} \geq 2^{l-1}$, and we will have a similar contradiction as before if $2^{l-1}>N^{2 \sqrt{l}}$. This latter inequality will always be true when $l=|T|=$ $\Omega\left(\log ^{2} N\right)$, to be shown in Lemma 7 .

### 3.4 Two Technical Lemmas

Lemma 6 Suppose $f \neq g$ and $f, g \in \mathcal{F}_{l-1}$ are introverted with respect to $m_{1}, \ldots, m_{l}$ (all distinct $\bmod r$ ). Then $f \not \equiv g(\bmod h(x))$.

Proof We can view $f(z), g(z) \in \mathbb{F}_{p}[z]$ as $f(z), g(z) \in K[z]$ because $\mathbb{F}_{p} \subseteq K$. If $f(x) \equiv g(x)$ $(\bmod h(x))$, then $x \in K$ is a root of $f(z)-g(z)$ which is a non-zero polynomial with degree no more than $l-1$.

Now using introversion, we also have $f\left(x^{m}\right)=f(x)^{m}=g(x)^{m}=g\left(x^{m}\right)$ for each $m \in T$ so there are at least $l$ roots to $f(z)-g(z)$, so there must be true that $x^{m_{i}} \equiv x^{m_{j}}(\bmod h(x))$ for some distinct $m_{i}, m_{j} \in T$. In such a case, we have both

$$
\begin{aligned}
x^{m_{i}-m_{j}}-1 & \equiv 0 \quad(\bmod h(x)) \\
x^{r}-1 & \equiv 0 \quad(\bmod h(x))
\end{aligned}
$$

(This is another reason for our choice of polynomials like $x^{r}-1$ ). We therefore have that $x^{\operatorname{gcd}\left(m_{i}-m_{j}, r\right)}-$ $1 \equiv 0(\bmod h(x))$, giving $x-1 \equiv 0(\bmod h(x))$ but this is against our choice of $h(x)$.

[^0]Lemma 7 There exists prime $r \leq O\left(k^{2} \log N\right)$ such that

$$
\left|\left\{N^{i}(\bmod r) \mid i\right\}\right| \geq k
$$

Notice that by choosing choosing $k=\log ^{2} N$ we have $l=|T| \geq\left|\left\{N^{i}(\bmod r) \mid i\right\}\right| \geq \log ^{2} N$.
Proof [not provided in class but can be found in prenotes]
Suppose this is not true for some prime $r$, that is $\left|\left\{N^{i}(\bmod r) \mid i\right\}\right|<k$, then $r$ must divide the difference between $N^{i}$ and $N^{j}$ for some $0 \leq i, j \leq k-2$, and therefore:

$$
r \mid M:=\prod_{i=1}^{k-2}\left(N^{i}-1\right), \quad \text { and } M \leq N^{k^{2}}
$$

However, if this is true for all prime $r$ that is below $m$, then we have

$$
\prod_{p_{i} \text { is prime }} p_{i} \leq M \leq N^{k^{2}} .
$$

But this contradicts with Corollary 9 below, when $m=\Omega\left(k^{2} \log N\right)$.

## Theorem 8 (Weak Prime Number Theorem)

$$
\mid\{\text { prime number } \leq 2 m+1\} \left\lvert\, \geq \frac{m}{\log _{4}(2 m+1)}\right.
$$

Proof Ommited, but it uses the fact that $\operatorname{lcm}(1,2, \ldots, 2 m+1) \geq 4^{m}$. See the prenotes.

Corollary 9 There exists some constant $c>1$ such that

$$
\prod_{p_{i} \leq m, p_{i} \text { is prime }} p_{i}>c^{m}
$$


[^0]:    ${ }^{1}$ Notice that if we just look at all $N^{i}$ we can get $N^{r}$ naively, but using $p$ we can benefit.

