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Dispersers and Extractors for Low-Degree Algebraic Sources

Instructor: Madhu Sudan (Lecturer: Eli Ben-Sasson) Scribe: Elette Boyle

Much of today is based on a paper of Ben-Sasson and Gabizon [BG11] on ECCC.

1 Motivation

Randomness has proven to be a useful tool in design of algorithms. For some tasks, such
as polynomial identity testing, efficient randomized algorithms are known but there is no
deterministic equivalent. (Another example of this used to be primality testing for integers,
but as we saw in the last lecture an efficient deterministic algorithm now exists). This
raises several questions: Is randomness needed to achieve certain tasks? Can we remove it?
Exactly what does randomness do in computation?

These questions are the center of several lines of important research in theoretical com-
puter science. This includes some of the following goals:

• Removing randomness (derandomization). That is, for some randomized algorithm,
can you come up with an algorithm that doesn’t require randomness? For some simple
classes, like AC0, this can always be done. In general, it is not always known.

• Distilling randomness (extractors). Perhaps we have a source of partial randomness,
with only a guarantee that there is high entropy. However, many applications require
truly random bits. An extractor is a fully deterministic construction that takes partly
random bits and compresses them in a clever way to extract out pure randomness.

An example application of extractors arises in the setting of cryptography, where
you may have only an entropy source, or randomness on which partial information
has been leaked, and you need truly random secret keys to ensure security of your
cryptosystem/protocol.

• Constructing pseudo-random objects. For example, expander graphs are an “approx-
imation” of random graphs. Because of this property, they are useful for many appli-
cations, such as the construction of error-correcting codes.

2 Extracting from Low-Degree Polynomials Sources

2.1 Low-Degree Polynomial Sources

Definition 2.1. A source is a distribution over some finite domain. In our case, we will
consider distributions over Fnq .

For today, we will look at a particular class of “simple” sources that are generated
by polynomials of low degree, and will show how to extract (true) randomness from such
sources.
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Given a collection of polynomials f1, ..., fm (in our case, we will consider polynomials of
low degree, say deg fi ≤ 2), there are two natural associated sources:

1. The first is the uniform distribution over the set of common zeroes of the fi. Namely,

X uniform on {x ∈ Frq : f1(x) = · · · = fm(x) = 0}.

This set has many nice mathematical properties: in particular, it forms an algebraic
variety (in our case, a degree-2 variety). One thing to note is that we do not have a
method of efficiently sampling from this distribution, for general choices of polynomials
fi. However, even so, it would still be very interesting (and probably useful in the
long run) to be able to extract from it.

2. Today, we will be focusing on parameterized sources corresponding to the fi. That is,

X = {f1(Z), ..., fn(Z) : Z uniform on Frq}. (1)

The output of this source is computed by evaluating a number of polynomials on a
uniformly random input.

We remark that for deg fi = 1 ∀fi, these two sources are actually equivalent. This is
because affine sources can be equivalently described as the image of a linear transformation
or the kernel of one. This type of source is referred to as an affine source.

2.2 Extractors for Low-Degree Poly Sources

The most important property of a source (for us) is its min-entropy. Loosely speaking, the
min-entropy of X corresponds to the size of Supp(X).

Definition 2.2. X has min-entropy k if ∀x ∈ Fnq , Pr[X = x] ≤ q−k.

Note that extracting from a source becomes harder and harder as the min-entropy of
the source decreases. Often, people look at the min-entropy rate, where the min-entropy
rate of a source X over Fnq is defined to be the ratio (min-entropy(X))/n.

We will now focus on the low-degree polynomial sources that we introduced in the
previous section.

Definition 2.3. We define an [n, k, d]q-source as a distribution X given by degree d poly-
nomials (as in Equation (1)) with the property that |Supp(X)| ≥ qk.

Definition 2.4. A function E : Fnq → Fmq is a (k, d, ε)-extractor if for all [n, k, d] sources X,

|E(X)− UFm
q
| ≤ ε;

that is, the output distribution of E applied to any [n, k, d]-source X is within ε statistical
distance from the uniform distribution over Fmq .

An important object that is used to yield extractors is known as a disperser. Informally,
a disperser for a particular class of sources is a function D with the property that for
any source X within the relevant class, the support of the output distribution D(X) is
sufficiently large. In fact, for intuition, you can think of a disperser as being any function
that is non-constant on any such source X.

For simplicity, we will state the next theorem in terms of constructing a disperser.
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Theorem 2.5. There exists a deterministic function E : Fn4 → F4 that is non-constant on
any [n, n2 + 100, 2]-source, provided the source is multi-linear homogeneous. (That is, if the
source is of the type defined in Equation (1), where the fi’s are each homogeneous of degree
2 and linear in each variable).

More explicitly, the theorem considers sources of the form X = {f1(Z), ..., fn(Z) :
Z uniform on Frq} where for each i = 1, ..., n,

fi(z1, ..., zr) =
∑

(j,`)∈(r2)

a
(i)
j,`zjz`,

with coefficients a
(i)
j,` ∈ F4.

Consider a simpler question. Namely, suppose we want one function that takes n bits
to 1 bit with the property that for any affine (deg 1) space X of dimension > n/2, this
function is not constant. Consider the inner product function: i.e.,

E(x1, ..., xn) = x1x2 + x3x4 + · · ·+ xn−1xn.

Why does the inner product function satisfy this property? In order for the inner product
to be constant on the source X, the space spanned by the (x1, x3, ..., xn−1) must be dual to
the space spanned by the (x2, x4, ..., xn). The maximum such dimension of these spaces is
n/2, but our space has strictly more than n/2 entropy.

In fact, this construction is even an extractor. Using Fourier analysis, one can show
that |IP (x(1), x(2)) − U | < 2−(k

n
2
)/2 (where IP is the inner product). You can also use

this technique to extract more than one random bit. To do so, modify the standard inner
product by multiplying by first transforming the two vectors via an invertible matrix Mα:

Eα(x(1), x(2)) =
[

x(2)
]
 Mα


x(1)

 = b.

Note that for Mα = In/2 (the identity matrix), Eα corresponds to the standard inner
product function. Now, pick a basis {α1, ..., αn/2} for the field F2n/2 over F2. For each
element α in the basis, let Mα be the matrix corresponding to the F2-linear transformation
of F2n/2 to itself given by of multiplication by α. Note that Mα is necessarily full rank, since
multiplication by α is invertible within the field. Since the αi are independent over F2, we
can concatenate each of the resulting output bits:

E(x(1), x(2)) =
(
Eα1(x(1), x(2)), ..., Eαn/2

(x(1), x(2))
)
.

3 Applications

Theorem 3.1 (Demenkov-Kulikov 2011). Any circuit over the full binary basis (ie, allowing
any function from 2 bits to 1 bit as single gate) computing an affine disperser for sources
of min-entropy rate o(1) over Fnq requires ≥ 3(1− o(1))n gates.
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Remark 3.2. A few remarks about this result.

1. World record lower bound! This is actually the highest lower bound on circuit size
that has been proved for any type of computation.

2. The lower bound is for dispersers for affine sources with o(1) (low) min-entropy rate.
Constructions of such dispersers are actually known [Ben-Sasson, Kopparty 2009] and
[Shaltiel 2011].

Proof of Theorem 3.1. The high-level idea will be to iteratively “kill off” 3 gates of the
circuit at the cost of restricting the input source by codimension 1. (By killing off a gate,
we mean that this gate now evaluates to a constant for all values in the restricted input
space). Repeating this process, we will eventually restrict to some subspace of the original
input distribution for which the evaluation circuit of the disperser can be described by a
trivial constant circuit. However, if the restricted subspace still has sufficient min-entropy,
then this will contradict the fact that the circuit evaluates a disperser, which must be
non-constant on such sources.

We now describe this process more formally. Begin with the original circuit evaluating
the affine disperser, and sort the gates of the circuit topologically. Consider the first gate
R within this ordering that is non-linear on its two inputs. Since this is the first such gate,
the two gates P,Q preceding R are necessarily linear (affine) functions.

P Q 

R 

S 

Non-linear 

Linear 

We will restrict our input space X to either X0 or X1, where Xb is defined as

Xb := {x ∈ X : gate P evaluates to b on circuit input x}.

Note that, since P is linear, if X is an affine source, then so will each Xb. Now, since gate
R is non-linear, then R(z1, ·) must be constant for either z1 = 0 or z1 = 1. We will restrict
to the space Xb for this choice of z1 = b.

Consider the effects on the circuit of restricting to Xb. By choice of the space Xb, we
know that gates P and R always evaluate to a constant, and so can be removed. Indeed,
the constant either corresponds to the identity gate for one of the incoming wires, which
can be removed altogether, or a not gate, which can be absorbed into each of the following
gates (this is where we use that our circuit is over the full binary basis). Further, there
must be at least one gate S following gate R. Since R evaluates to a constant, S is either
the identity or negation of its second input, which can also be absorbed into the following
gates. Hence, by restricting our input source by codimension 1 (from X to Xb), we have
removed 3 gates from the circuit needed to compute the disperser on the restricted input
space. Hence, by repeating this process as described above, the theorem holds.
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Theorem 3.3 (Hou, Leung, Xiang 2002). Let n be prime. Then for any two sets A,B ⊆ Fqn
with A,B 6= {0}, the product set A ·B = {a · b : a ∈ A, b ∈ B} satisfies

dim(span(A ·B)) ≥ min{n,dim(span(A)) + dim(span(B))− 1}.

Here, dimensions are taken over Fq. (Recall that Fqn ∼= Fnq as Fq-vector spaces).

This result says that if you know something about the additive structure of A and
B (ie, span(A), span(B)), then you can conclude something also about the multiplicative
structure.

Proof. Assume A = span(A) and B = span(B). (The proof easily extends to general A,B).
We will prove by induction on dim(A).

If dim(A) = 1, then the claim holds directly, since A ·B is isomorphic to B as Fq-vector
spaces, for example by the map φa : B → A · B defined by multiplication by any fixed
element a ∈ A \ {0}. Thus, dim(span(A ·B)) = dim(span(B)), and we are done.

Now, suppose 1 < dim(A) < n. Without loss of generality, we can assume 1 ∈ A ∩ B.
Otherwise, we can move to any A→ g ·A, B → g′ ·B for g, g′ ∈ Fqn \ {0} without changing
dimension, since this is an invertible linear transformation. Pick a ∈ A \ Fq. Such an a
exists since dim(A) > 1. Take ` to be the smallest power of a that is not contained in B.
We know that 0 < ` ≤ n−1: ` > 0 because 1 ∈ B, and we can assume ` < n since otherwise
B is necessarily the entire space Fqn (in which case the claim holds immediately). Now,
multiply B by a−(`−1), (which exists, since we are within a field). The result is 1 ∈ (A∩B)
and a ∈ A \B. Thus, 1 < dim(A ∩B) < dim(A). So, by induction, it holds that

dim((A ∩B) · (A+B)) ≥ min{n,dim(A ∩B) + dim(A+B)− 1},

where A+B is the span of {a+b : a ∈ A, b ∈ B}. But dim(A∩B)+dim(A+B) = dim(A)+
dim(B). Notice that span(A·B) ⊇ (A∩B)·(A+B), and so dim(A·B) ≥ dim(A∩B)·(A+B).
Indeed, for general a ∈ A, b ∈ B, c ∈ A ∩B, c(a+ b) = ca+ cb = b′a+ a′b ∈ span(A ·B).

This theorem is very powerful, as it tells us a way to expand the dimension of a source so
it fills up the whole space. It is something to keep in the back of your mind when attempting
to deranomdomize algorithms.

Ending question: Show that the following transformation expands the linear dimension
of its input. Take A ⊆ Fn2 a space of dimension d. Prove that

dim
(
span{a3 : a ∈ A}

)
> d+ 3.

What is strange is that, if d > n/2, then you can show that the space expands to the full
dimension n. But if the original dimension is, say, n/2 − 1, then we don’t even know if it
expands a little bit. If you can show this, it would be an important step for constructing
better pseudorandom objects.
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