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1 Today

• Systems of polynomial equations.

• Ideals and varieties

• Groebner bases

2 Solving a system of polynomial equations

Given f(x) ∈ F[x] , deg f ≤ n we can find a zero of this polynomial in time poly(n) · log |F| . This
problem is no harder for a system of polynomial equations, as we can just reduce it to finding a zero of
the GCD of the polynomials. So we consider the following problem: given m polynomials in n variables
over a field K,

f1, ..., fm ∈ K[x1, ..., xn],

does there exist a vector ā
def
= (a1, ..., an) ∈ Kn such that

f1(ā) = ... = fm(ā) = 0?

This problem can be solved in exponential time over finite fields, but is NP-hard even when deg f is just
2. Consider the following reduction from 3SAT :

• For each variable xi define the polynomial xi(1− xi).
• For each clause (x1 ∨ x2 ∨ x3) define the polynomial (1− x1)(1− x2)x3.

The exact hardness of the problem can depend on the setting (m,n, particular families of polynomials)
and the field we are working over. A commonly looked at setting is over the reals.

3 Existential theory of the reals

f1, ..., fm ∈ R[x1, ..., xn], does there exist a vector ā ∈ Rn such that

f1(ā) = ... = fm(ā) = 0?

We create boolean variables z1, ..., zm where zi = true if fi(ā) = 0. We can ask whether ∃ā such that
ϕ(z1, ..., zm) = true, this is called the Existential Theory of the Reals. ETR in fact studies the more
general question where zi is true when fi(ā) ≥ 0, so it can also be seen as a generalization of linear
programing. [Tarski51] showed that ETR is decidable. [Canny88],[Renegar88] and [reif] showed that
ETR is in PSPACE

We note that we can make the problem even broader by adding more layers of quantification: given
f1, ..., fm is it the case that ∃a1∀a2∃a3...Qan s.t.

f1(ā) = ... = fm(ā) = 0?

These questions form the Quantified Theory of the Reals, which is also decidable. The decidability
of these problems means that there exist proofs of non-feasibility of polynomial systems. In fact, we will
see that there exists algebraic proofs of non-feasibility.
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4 Hilbert’s Nullstellensatz

We’ll look at a benign setting where the field is algebraically closed, and where we are interested in
polynomial equalities (and not inequalities). An algebraically closed field is a field where every polyno-
mial splits into linear factors. There are such fields with any prime characteristic (and obviously with
characteristic 0).

So we’re examining the problem of given m polynomials in n variables over an algebraically closed
field K, f1, ..., fm ∈ K[x1, ..., xn] does there exist a vector ā ∈ Kn such that f1(ā) = ... = fm(ā) = 0?

A proof of feasibility would be a point where all the polynomials are zero. What would a proof of
non-feasibility be? To answer that we introduce Hilbert’s nullstellensatz (null locus theorem):

Theorem 1 (Nullstellensatz (weak version)) Given polynomials f1, ..., fn ∈ K[x̄], the following
two statements are equivalent:

∃ā such that f1(ā) = ... = fm(ā) = 0

and
¬
(
∃q1, ..., qm ∈ K[x̄] such that

∑
fiqi = 1

)
.

We might prove this later in the course. For now we note that one direction is clear: if there exists
a polynomial combination of the polynomials f that is identically 1, then the polynomials can never be
simultaneously 0.

So it seems we should be looking at (f1, ..., fm) and asking if a particular polynomial (in this case 1)
is in the ideal generated by them.

5 Ideal membership question

Definition 2 (Ideal) J ⊆ K[x̄] is an ideal if:

• ∀p, q ∈ J : p+ q ∈ J
• ∀p ∈ J & q ∈ K[x̄] : p · q ∈ J

Definition 3 (Generated ideal) We define (g1, ..., gt) = {
∑
qi · gi|qi ∈ K[x̄]}, clearly this is an ideal.

Can we bound t? Not in general. For instance the ideal {xiyd−i}di=0 must have at least d+ 1 generators.
To be able to bound t we must limits the degree in J in some way. However, we can say that there is a
finite generating set for every polynomial ideal:

Theorem 4 (Hilbert’s basis theorem (relies on Dixon’s lemma)) Every polynomial ideal J is finitely
generated.

Hilbert’s basis theorem holds over any noetherian ring, in particular, it hold over every field.
Hilbert’s nullstellensatz gave us a criteria for the non-feasibility of a polynomial set of equations:

is 1 in the ideal generated by these polynomials? We generalize this question to the Ideal Membership
Question:

Given f1, ..., fm ∈ K[x̄] and f0 ∈ K[x̄] is f0 ∈ (f1, ..., fm)?
Taking f0 = 1 seems to be the hardest setting for this problem, thus implying that nullstellensatz

and the IMQ equivalent. However, this turns out not to be the case. To show this, we first state the
strong version of the nullstellensatz:

Theorem 5 (Nullstellensatz (strong version)) Given polynomials f0, f1, ..., fn ∈ K[x̄], such that
f0 is zero on all common zeros of f1, ..., fm then ∃d such that fd0 ∈ (f1, ..., fm)
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Testing this criteria, which is all we need for feasibility, turns out to be significantly easier than IMQ.
The difference between the two will stem from the degree bounds we are able to find for the polynomial
coefficients placing f0 (or fd0 ) in (f1, ..., fm)

Let deg f1, ..., fm ≤ d [Hermann26] gave a bound on the degree of the coefficients qi in the expression
f0 =

∑
qi · fi that is doubly exponential. If we represent this as a linear system of equations, we can

solve it in exponential space. This seems outrageously wasteful, but [Mayr-Meyer82] showed that IMQ
is EXPSPACE complete. So we cannot hope to significantly improve this algorithm.

Solving for fd0 =
∑
qi · fi allows us to drop one exponent from the degree of the coefficient, thus

putting the strong nullstellensatz problem (and the problem of determining the feasibility of a polynomial
system of equations) in PSPACE.
∃ā such that f1(ā) = ... = fm(ā) = 0 seems like an NP problem, as we can just guess ā. The problem

is that we cannot bound the size of ā, even when the coefficients of the polynomials are small (only 0, 1).
In fact, this approach wasn’t proven to give anything until [Koiran96] which showed that, assuming

the GRH, the nullstellensatz is in AM⊆ Σp2.
In summery:

• IMQ: Groebner basis shows decidability. Linear algebra gives EXPSPACE algorithm. Problem is
EXPSPACE-complete.

• Hilbert’s nullstellensatz:

– PSPACE unconditionally

– AM under GRH

– NP-hard

6 The basis for groebner basis

Definition 6 (Radical) The radical of an ideal J is defined: R(J) = {f ∈ K[x̄]|∃d, fd ∈ J}.

The radical of an ideal is an ideal.

Definition 7 (Radical ideal) A radical ideal is an ideal that is equal to its radical. So J is a radical
ideal iff J = R(J).

Definition 8 (Variety) The variety of f1, ..., fm is defined as V ({f1, ..., fm}) = {ā ∈ Kn|f1(ā) = ... =
fm(ā) = 0}.

In the groebner basis method we seek to transform an input set of polynomials f1, ..., fm into a set of
polynomials g1, ..., gt which generate the same ideal but are easier to work with. To motivate, consider
the following naive algorithm for IMQ:

If f0 =
∑
qi·fi then we can take f0( mod f1), we would have like if that would have equaled

∑m
i=2 qi·fi.

But in general there is no nice notion of a remainder when dividing by multivariate polynomials. For
example, when f0 = x2y+y2x = xy, f1 = xy−1 and f2 = y2−1 then f( mod f1f2) = x+y+1 = 2x+1.
In the groebner basis method we arrange a basis such that the remainder is unique.

Let xa
def
=xa11 ...x

an
n

Definition 9 (admissible ordering of monomials) A total ordering on all monomials is an ordering
for which holds:

• xa < xb ⇒ ∀d: xaxd < xbxd.

• ∀d: 1 < xd.
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While any admissible total ordering of the monomials would be fine for our purposes, a couple of
popular ones are:

1. Lexicographical ordering: In which we compare xα and xβ thus: if the first k − 1 indices agree,
αi = βi, i ≤ k − 1 and the kth differ, we decide based on that index αk ≤ βk ⇒ α ≤ β, and the
reverse.

2. Graded lexicographical order: in which the order is by the degree of the monomials and ties are
broken using lexicographical ordering.

Definition 10 (Leading term of a polynomial) Fix some admissible ordering of the monomials, the
leading term of a polynomial f =

∑
cdx

d is defined as cdx
d for the greatest d for which cd 6= 0. We mark

it as LT (f). We also define the leading monomial: LM(f) = xd and the leading coefficient: LC(f) = cd

For an ideal J let LT (J) be all the leading terms of polynomials in J and (LT (J)) the ideal generated
by the set LT (J).

Definition 11 (Groebner basis) We call {g1, ..., gt} a groebner basis of J if (LT (g1), ..., LT (gt)) =
(LT (J)) and g1, ..., gt ∈ J .

Implied is that a groebner basis for an ideal is also a basis for that ideal.
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