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1 Overview

Today we will discuss an algorithm for solving the ideal membership problem: the method
of Gröbner bases. In particular, we will define this notion, show how constructing such
objects solves the ideal membership question, and then give the construction. There is also
a notion of uniqueness, which we may cover in future lectures.

2 Ideal Membership Problem

The Ideal Membership Problem is as follows: given f0, f1, . . . , fm ∈ K[x1, . . . , xn], is f0 ∈
〈f1, . . . , fm〉, where 〈f1, . . . , fm〉 denotes the ideal generated by the fi? An equivalent for-
mulation is: are there q1, . . . , qm ∈ K[x1, . . . , xn] such that f0 =

∑m
i=1 qifi? We will solve

this question by using Gröbner bases. That is, a Gröbner basis is a “nice” representation
of an ideal, that allows us to easily decide membership. The difficult part of the analysis is
to construct Gröbner bases, and we will do so using Buchberger’s algorithm (Buchberger’s
work essentially started the field of Gröbner bases, and he named the notion after his ad-
visor, Gröbner). The Gröbner basis technique has turned out to be fairly successful in
practice, although its theoretical guarantees are quite weak (and provably so). However, it
is still a nice theory, and in particular unifies two otherwise disparate topics: solving linear
systems of equations, and computing greatest common divisors of univariate polynomials.
We now discuss these two relations.

Suppose the polynomials fi are all linear with no constant term, and we still want to
solve the ideal membership question. One can then show that it is enough to assume the
qi are in fact constants from the field K, instead of general polynomials in K[x1, . . . , xn].
Thus, in this case the ideal membership question is just that of solving a linear system,
which can be solved by Gaussian elimination. In this case, the notion of a Gröbner basis in
fact reduces to the notion of row-reduced echelon form. Further, recall that solving a linear
system is quite easy given the row-reduced echelon form. Constructing the echelon form can
be done via Gaussian Elimination, which is comparably more expensive. The same notions
will be true of Gröbner bases.

In another simple case of ideal membership, suppose we have all univariate polynomials,
so n = 1. In this case, we can recall that 〈f1, . . . , fm〉 = 〈gcd(f1, . . . , fm)〉. So to test if
f0 ∈ 〈f1, . . . , fm〉, it suffices to test if gcd(f1, . . . , fm) divides f0. Constructing this gcd
seems the comparably more expensive part of this test, and once given the gcd the division
is quite quick.

Now that we have discussed two subcases of this question, let us consider the entire ideal
membership question. The starting point is that given f0, we want to compute its “remain-
der” modulo the fi. This requires some notion of division for multivariate polynomials.
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This notion can be described as follows. We first order the monomials in K[x1, . . . , xn] by
some total order (called an admissible order) < such that

• ~x~a < ~x
~b =⇒ ~x~a+

~d < ~x
~b+~d

• 1 ≤ ~x~a

This naturally generalizes the ordering on univariate monomials, where we order by degree,
and on linear forms, where we pick some ordering on the variables such as x1 > x2 > . . . >
xn, which corresponds to some ordering on the columns in the matrix when performing
Gaussian Elimination. Once given this ordering, we do the same thing in univariate division
(and Gaussian Elimination): given polynomials f and g, we can reduce f by g be scaling g
to cancel out the “largest” part of f . Specifically, recall the notion of a leading term of a
polynomial f , denoted LT (f), which is the monomial (along with its coefficient) of f which
is largest according to the ordering <. So if LT (g) divides LT (f), then we can perform the
reduction f 7→ f − g ·LT (f)/LT (g). By using the first property of our admissible ordering,
we see that the result has strictly decreased the leading term (with respect to the leading
term).

Let’s consider an example. Suppose f1 = xd + g1, f2 = xd−1 + g2. Then we can take
f1 and reduce it with f2 to get f1 − xfx = g1 − xg2, which is “smaller”. One would hope
that to determine if f ∈ 〈g1, . . . , gt〉 we could perform this reduction step over and over.
However, one difficulty in the above reduction step of f by polynomials g1, . . . , gt is that it
might be that LT (gi) fails to divide LT (f) for all i, but that f ∈ 〈g1, . . . , gt〉.Note that this
can even happen in univariate polynomials, as the gi might have large degree while f might
have small degree. Thus, we must do some work to ensure that for any f ∈ 〈g1, . . . , gt〉
there is some i such that LT (gi) divides LT (f). We can do this by enlarging the set of gi.
Once we have done so, we have a Gröbner basis.

Definition 2.1. 〈g1, . . . , gt〈 is a Gröbner basis for the ideal J := 〈f1, . . . , fm〉 if: g1, . . . , gt ∈
J , and 〈LT (g1), . . . , LT (gt)〉 = 〈LT (J)〉.

This second condition means that if we take the ideal generated by the leading terms of
all of the polynomials in J , then this ideal is also generated by the leading terms of the gi
alone. Such an ideal generated by monomials is called a monomial ideal. They have a special
structure, and in particular the following, easily proven, fact holds. Given a monomial ~x~a in

a monomial ideal generated by {~x~b}~b∈S , where S is possibly infinite, it must be that there is

some ~b ∈ S such that ~x
~b divides ~x~a. Thus, these conditions imply that our above reduction

step f 7→ f − g ·LT (f)/LT (g) can always make progress when working on a Gröbner basis,
as there will always some g so that LT (g) divides LT (f). We will show shortly that these
conditions on the Gröbner basis also imply that the gi also generate J .

3 Membership Testing

We now put some of the above ideals on a more firm basis. We start with the question:
do Gröbner bases exist at all? To show this, we start with the so-called Hilbert’s Basis
Theorem, which states that any ideal in K[x1, . . . , xn] is finitely generated. To see that this
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implies that Gröbner bases exist, observe that for an ideal J = 〈f1, . . . , fm〉 if we take a
finite set of generates for 〈LT (J)〉, we get that 〈LT (J)〉 = 〈LT (g1), . . . , LT (gt)〉 for gi ∈ J ,
which gives us the Gröbner basis. We will sketch a special case of Hilbert’s Basis theorem,
called Dickson’s lemma, which proves that monomial ideals are finitely generated. This is
sufficient for our purposes as the ideals we consider, 〈LT (J)〉, are monomial ideals.

Lemma 3.1 (Dickson’s Lemma). Let J ⊆ K[x1, . . . , xn] be a monomial ideal, that is, an
ideal generated be a (possibly infinite) set of monomials. Then J is finitely generated, by a
finite set of monomials.

Proof Sketch. The proof is by induction on the number of variables. We will sketch how
the proof goes for n = 2. Consider an ideal J , with monomial xiyj . Now observe that if we
have another monomial xkyl which is a multiple xiyj , then the monomial xkyl is “covered”
by xiyj . In particular, in the set of monomial generators for J , we can discard any such
xkyl.

Now consider those monomials of the form xkyl for any fixed k < i. These monomials
are only really on one variable, y, so we can appeal to induction to show that for any fixed
k < i that set of monomials is also finitely generated. We can also make the same argument
for any fixed l < j. As there are a finite number of k < i, and a finite number of l < j,
we can simply union all of these generators together, and thus generate the entire space of
monomials.

Note that the above proof gives no effective bound on the size of the generating set of
monomials, the proof only shows that the set is finite. We may see in later lectures how to
get a finite bound on the size of the generating set of 〈LT (J)〉 for J = 〈f1, . . . , fm〉, given
degree bounds on the fi.

We now show how to derive ideal membership testing from Gröbner bases. For this, we
will use the following notation. The multi-degree, denoted mdeg, of a polynomial f is the
multi-degree of its leading term, and the multi-degree of ~x~a = ~a. We will also assume that
all polynomials are monic, unless otherwise specified. This is without loss of generality as
we work over a field. We now begin formalize the reduction notion from above.

Definition 3.2. Consider f, h1, . . . , hl ∈ K[x1, . . . , xn]. The weak remainder of f with
respect to the hi is the polynomial r = f −

∑
qihi such that no monomial of r is divisible

by any LT (hi).

This can be seen as a local optimum of the division algorithm. That is, we have reduced
f modulo the hi as far as possible, by cancelling out monomials divisible by the LT (hi).
However, it is possible that we “got stuck”. That is, we perhaps could make the remainder
r smaller, but fails, as there are no monomials divisible by any LT (hi). One example of this
is f = r = x, and h1 = x(x+1), h2 = x(x+2). Clearly 〈h1, h2〉 = 〈x〉, and so the remainder
of f by h1, h2 should be zero. But we get r = f = x because we cannot reduce any further
by cancelling out monomials by the LT (hi). Thus, we see that the weak remainders are not
unique in general. However, if the hi form a Gröbner basis, then we can show that weak
remainders are unique.

Lemma 3.3. Let g1, . . . , gt be a Gröbner basis for the ideal J = 〈g1, . . . , gt〉. Then for any
f , the weak remainder with respect to the gi’s is unique.
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Proof. Suppose f = r +
∑

qigi = r′ +
∑

q′igi are two weak remainder decompositions of f .
Then r − r′ =

∑
(qi − q′i)gi ∈ J . As the gi are a Gröbner basis, it follows that if r − r′ is

non-zero then its leading monomial of r − r′ must be divisible by some LT (gi). But the
monomials of r−r′ are a subset of the union of the monomials of r and r′, and none of those
monomials are divisible by any gi. Thus, it follows that r − r′ must be zero, so r = r′.

We can now establish that Gröbner bases are indeed bases. To do so, we need to
argue that weak remainders exist. We do so via a constructive argument. That is, define
the canonical remainder algorithm on input f, h1, . . . , hl as follows. We first express f =
r+

∑
qihi, with r = f and all qi = 0. We then find the highest multi-degree of a monomial m

in f such that for some i, there is a monomial mi LT (himi) = m. We then set r ← r−himi

and qi ← qi + mi. Thus, the equation f = r +
∑

qihi is invariant under this process.
Further, as we pick the highest multi-degree monomial at each point and this process does
not “mess up” higher multi-degree monomials, we see that at each stage we make progress,
and so will eventually terminate. When we terminate it is not hard to see that we get a
weak remainder.

We now note a property of the canonical weak remainder, that will be important for
the analysis of our Gröbner basis algorithm. We note that in f = r+

∑
qigi, we will always

have that the multi-degree of qigi will be at most the multi-degree of f . This is true by
analyzing the algorithm above. The importance of this fact is that this shows that there is
no “high degree cancellation” in the summation r +

∑
qigi.

Lemma 3.4. Let g1, . . . , gt be a Gröbner basis for J = 〈f1, . . . , fm〉. Then J = 〈g1, . . . , gt〉.

Proof. Consider any f ∈ J , we wish to show f ∈ 〈g1, . . . , gt〉. Let f = r+
∑

qigi be the weak
remainder (as constructed above) for f over the gi. Now we see that r = f −

∑
qigi ∈ J .

Thus, if r 6= 0 it must be that there is an i with LT (gi) dividing LT (r). However, the
construction of the weak remainder says this is impossible, so it must be that r = 0,
implying that f ∈ 〈g1, . . . , gt〉.

Thus, we now have our test for ideal membership, given a Gröbner basis. We see that
f ∈ 〈g1, . . . , gt〉 iff the weak remainder of f over 〈g1, . . . , gt〉 is zero. We constructed this
remainder above, and it is fairly efficient (for polynomials in the dense representation).

4 Construction of Gröbner Bases

Having shown that Gröbner bases solve the ideal membership problem, we now show an
algorithm, that runs in finite time, for constructing these objects. A paramount concept
in this algorithm is that of a syzygy. This word refers to the alignment of three celestial
objects in a straight line. For us, this concept refers to high-multi-degree cancellation of two
polynomials. That is, we refer to two polynomials f and g, each of the same multi-degree.
When we consider f − g we observe that this difference has strictly smaller multi-degree,
because of cancellation. More formally, we have the following definition.

Definition 4.1. Let f and g be two monic polynomials. Let m be the least common
multiple of LT (f) and LT (g), so that m is a monic monomial. Define S(f, g), the syzgy of
f and g, to be S(f, g) = mf/LT (f)−mg/LT (g).
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Note that this produces the desired cancellation, and does so in a minimal way. Also
note that ideals are closed under syzygies.

We now give the Gröbner basis algorithm, starting with the polynomials f1, . . . , ft. We
use the operator mod to denote the canonical weak remainder.

• B ← {f1, . . . , ft}

• iterate until no additions: if ∃gi, gj ∈ B so r := S(gi, gj) mod B has r 6= 0, then
B ← B ∪ {r}.

• output B.

Note that this is quite similar to the group membership algorithm we saw early on, in
that both algorithms find a “good” representation of an algorithmic object, from which
membership testing is easy. And to find this object, both cases add new polynomials or
group-elements by ensuring that the current set is closed under some binary operation.
Once the set is closed under this binary operation, the desired object is found. It would be
interesting to see if there is a formal connection between these two objects.

We first argue that this algorithm terminates. To see this, consider the ideal 〈LT (B)〉
over the course of the algorithm. Clearly 〈LT (B)〉 ⊆ 〈LT (J)〉 always. Note that in each
step, the r we add to B has a leading term not currently in 〈LT (B)〉. For, the reason the
weak remainder algorithm gives r 6= 0 is that the leading term of r cannot be canceled out by
any leading term in B, and this implies LT (r) /∈ 〈LT (B)〉, since we have the membership of
a monomial in monomial ideal is determined solely be division, as mentioned above. Thus,
we see that 〈LT (B)〉 is growing over time, by expanding the number of generators. As
〈LT (B)〉 ⊆ 〈LT (J)〉, and by Dickson’s lemma we have that 〈LT (J)〉 is finitely generated,
it must be that 〈LT (B)〉 is finitely generated at each point, and this implies that 〈LT (B)〉
cannot grow forever. That is, the algorithm must halt. So far this does not establish that
〈LT (B)〉 = 〈LT (J)〉, but that will be given by the following lemma.

Lemma 4.2. Let J = 〈g1, . . . , gt〉. If S(gi, gj) mod {g1, . . . , gt} = 0 for all i, j, then
〈LT (J)〉 = 〈LT (g1), . . . , LT (gt)〉.

Proof. Consider any f ∈ J . It will suffice to show that LT (f) ∈ 〈LT (g1), . . . , LT (gt)〉.
Express f =

∑k
j=1mjgij , where each mj is a monomial (possibly non-monic), and the

following conditions hold

• The multi-degree of migij is monotonically decreasing with i

• For all ~a, the number of i such that migij has multi-degree ~a is minimal, given all of
the monomials of multi-degree > ~a.

Note that the existence of such summations (even without the conditions) follows from
the fact that f ∈ J . That the first condition can be met is clear from sorting. That the
second condition can be met follows from the ability to pick out minimal elements from a
non-empty set.

Now consider the following. If mdeg(m1gi1) > mdeg(m2gi2) then we are done. That
is, if this occurs, then there is no cancellation of LT (m1gi1), as the mdeg monotonically
decrease. This implies that LT (m1gi1) = LT (f), and so LT (gi1) divides LT (f) as desired.
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Thus, suppose mdeg(m1gi1) = mdeg(m2gi2). We will show this cannot happen, by
the minimality condition we imposed. That is, we will show that m2gi2 = m1gi1 +
lower mdeg terms, so that we can write f = 2m1gi1 +

∑k
j=2mjgij + lower mdeg terms,

so we have decreased the number of terms with multi-degree equal to the multi-degree of
m1gi1 , which contradicts our minimality. Thus, it remains to show this relation.

Note that m1gi1 −m2gi2 has cancellation at the leading term, as these two polynomials
have the same multi-degree. Thus, there exists a monomial w such that m1gi1 −m2gi2 =
wS(gi1 , gi2). As S(gi1 , gi2) mod {g1, . . . , gt} = 0 we have that S(gi1 , gi2) =

∑
qigi, and as

this is by the weak remainder algorithm, we have mdeg(w) + mdeg(qigi) ≤ mdeg(w) +
mdeg(S(gi1 , gi2)) < mdeg(m1gi1). So we can express

m1gi1 −m2gi2 =
∑

(qiw)gi

as desired, as the right hand side has lower multi-degree than the mdeg(m2gi2).

So putting this all together, the algorithm must terminate with a set of polynomials,
whose syzygies have zero weak remainder on this set. This then implies the set is a Gröbner
basis for itself, and as it contains the fi, is a basis for the fi. We can then use this basis for
testing membership in the ideal 〈f1, . . . , fm〉.

5 Next Time

Next time we will discuss the complexity theory of the ideal membership question, such as
deriving degree bounds on the polynomials needed to certify ideal membership. We will
also discuss the EXPSPACE-hardness of the ideal membership question, using ideas from
the commutative word problem.
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