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1 Overview

Today we will discuss the complexity of the ideal membership problem. We will show a
lowerbound of EXPSPACE hardness via a reduction to the “commutative word problem.”
We will then prove a doubly-exponential via degree upperbounds by the Hilbert Nullstel-
lensatz.

2 Formulation

As a reminder, the formulation of ideal membership problem we are using today is as
follows: given f0, f1, . . . , fm ∈ K[x1, . . . , xn], are there q1, . . . , qm ∈ K[x1, . . . , xn] such that
f0 =

∑m
i=1 qifi?

3 CWEP: The Commutative Word Equivalence Problem

We show that Ideal Membership is EXPSPACE-Hard by reduction from the known EXPSACE-
Complete commutative word equivalence problem. It is formulated as follows:

Definition 3.1. We have an alphabet Σ, |Σ| = n along with the implicit equivalence rule

στ = τσ,∀τ, σ ∈ Σ

and a set of equivalence rules

αi = βi, i = 1, ...m....(∗)

Given two strings α, β, we need to decide if α ≡ β in the setting.

Due to the implicit rule, we can freely permute the letters in a string so that in any
string αi appears before βi and etc. Therefore what determines string α is the nubmer of
occurences of the jth symbol for j ∈ 1 . . . n. The relationship between the CWEP and the
ideal membership problem becomes clear since the (*) equations can be seen as relations
that generate an ideal.

3.1 Reduction

The reduction is as follows:

• Let Σ = σ1, . . . , σn
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• Let
αi = σi11 σ

i2
2 ...σ

in
n βi = σj11 σ

j2
2 ...σ

jn
n

• αi = βi =⇒ (σi11 + σi22 + ...+ σinn )− (σj11 + σj22 + ...+ σjnn ) = 0

• f(x1, . . . , xn) = (σi11 + ...+ σinn )− (σj11 + ...+ σjnn )

Claim 3.2. The polynomial f is in Ideal(f1, . . . fn) if and only if {αi = βi}mj=1 implies
α = β.

Proof. Omitted.

4 Upper Bounds

To get EXPSPACE bounds on the problem, we need the following two things:

1. Linear systerm over K with m equations and n variables can be solved in space
(log(m+ n)O(1))

2. Degree of qi in solution only need to be doubly exponentially large in n: deg(qi) ≤
D = (mnd)2

O(n)

Combining the above we can get complexity SPACE(polylog(degree bound)). We will not
prove statement 1 since it can be obtained via standard methods. We will focus on statement
2.

4.1 Two Views On Ideal Membership

We can formulate the problem of ideal membership testing in two ways:

1. As one linear equation over ring. Namely, given

f, f1...fm ∈ R = K[xi...xn]

We want to know if there exist qi such that

f =
∑

fiqi, qi ∈ R

In a ring, this problem is hard, since we cannot do inversions like we could in a field.

2. However, we can also view it as many linear equations over a field K.

We are given vectors of coefficients f~β, f1,~β, ..fm ∈ K[x1 . . . xn], and we want to know

if there exist {qj,~α}j=1...m
~α∈(Z≥0)n

,
∑
αi ≤ Dn such that ∀~β ∈ (Z≥0)n,

∑
βi ≤ Dn + d we

have

f~β =
∑
i

∑
~α≤~β

qi,~αfi,~β−~α

We want to know when does the existance of a solution to 1 implies the the existance
of solutions to 2 with parameter Dn.
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4.2 Strategy

The strategy we wil use is to build a common generalized problem Π(j) such that Π(n) is
equivalent to formulation 1 and Π(0) is equivalent to formulation 2.

Πj is a j-variable linear system formulated as follows:

Definition 4.1. Given f~β, fi,~β ∈ K[x1 . . . xn], does there exist {qi,~α},
∑

αi≤Dj
such that

f~β =
∑
i

∑
~α≤~β

qi,~αfi,~β−~α

With this general formulation, if we can find a way to eliminate variables, we can
interpolate between the two views of ideal membership. If we can prove the following
statement, we can prove the degree bound:

Lemma 4.2. Π(j + 1) has a solution with degree ≤ Dj+1 implies Π(j) has a solution with
degree ≤ poly(d,Dj + 1,m).

5 Proof of The Variable-elimination Statement

We write the collection of linear equations as A~x = ~b. Since we are interested in eliminating
variable j, we see ~x,~b as elements of K[x1, ...xj ][xj ] = R[z] where K[x1, ...xj ] = R. We need
the following key supporting lemma:

Lemma 5.1. Given A~x = ~b is a M ×M linear system over R[z] of degree ≤ D, and A
has full rank miner with monic determinant, then A~x = ~b has solution implies that it has a
solution with deg(xi) ≤ poly(mD).

Proof. Without the loss of generality we write

A =

[
Ã B
C D

]
Where Ã is full rank and det(Ã) is monic. The solution looks like

x =

[
xi
x2

]
, b =

[
bi
b2

]
Note, by rank, that (if solution exists)

[
Ã B

] [x1
x2

]
=
[
b1
]

=⇒
[
C D

] [x1
x2

]
=
[
b2
]

Therefore we can ignore
[
C D

]
,
[
b2
]
. We want to show that WLOG deg(

[
x1
x2

]
) is small.

In the case of x1, we have
x1 = Ã−1(b1 −Bx2)

so deg(xi) ≤ deg(Adj(A)+deg(bi)+deg(B)+deg(x2)), due to the fact Ã−1 = Adj(A)/det(A).
So it suffices to show that we can reduce the degree of x2.
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Now we use the fact that [xi, x2] has a solution implies (x1 +Adj(Ã)By2, x2 − det(Ãy2)
also has a solution. Therefore we can reduce deg(x2) ≤ deg(det(Ã)) ≤ mD.

From above, it follows that deg(xi) ≤ O(mD) also.

To show that our original problem satisfies the above technical condition, we use a
technique called Generic/Random invertible linear transform. It allows us to use Lemma
5.1 and to ensure det(Ã) is monic.

Lemma 5.2. Given A~x = ~b with A,~b,∈ K[x1, ...xj ], let T : Kj → Kj be an invertible affine
transform. Then

1. x is a solution to (A,~b) iff and only if ~x(T ) is a solution to (A(T ),~b(T )); and
deg(~x(T )) = deg(~x).

2. With high probability over choices of T , det(Ã(T )) is monic in xj.

Combining Lemma 5.1 and Lemma 5.2, we get proof of Hermann’s bound on degrees of
q1, . . . , qm.
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