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Hilbert Nullstellensatz & Quantifier Elimination
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Throughout, K will denote an algebraically closed field.
Recall that, given a (commutative) ring R, an ideal I of R if I ⊆ R, I is closed under

addition (i.e., a, b ∈ I =⇒ a + b ∈ I) and under multiplication by elements of R (i.e.,
a ∈ I, r ∈ R =⇒ ra ∈ I).

Also recall that a subset V of Kn is an (affine) variety if it is the locus of points where
some set of polynomials in K[x1, . . . , xn] vanish simultaneously.

For more details about ideals and varieties (including further discussions and more
detailed proofs for the Hilbert Nullstellensatz, which we will cover today), see [CLO07].

1 From Ideals to Varieties and Back

When studying polynomials f1, . . . , fm ∈ K[x1, . . . , xn], we can choose an algebraic or geo-
metric perspective; these two perspectives respectively give rise to the notions of the ideal
and the variety of {f1, . . . , fm}.

Definition 1.1. The ideal of f1, . . . , fm ∈ K[x1, . . . , xn] is the set of polynomials

Ideal(f1, . . . , fm) =

{
m∑
i=1

qifi

∣∣∣∣∣ q1, . . . , qm ∈ K[x1, . . . , xn]

}
.

Definition 1.2. The variety of f1, . . . , fm ∈ K[x1, . . . , xn] is the set of points

Var(f1, . . . , fm) = {(a1, . . . , an) ∈ Kn | f1(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0} .

More generally, given a variety V in Kn and an ideal I in K[x1, . . . , xn], we can define

Ideal(V ) = {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ Kn} ,

Var(I) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0 for all f ∈ I} .

2 Radical of an Ideal

An important notion that we shall need today is the radical of an ideal:

Definition 2.1. The radical of an ideal I, denoted Rad(I), is the set defined as follows:

Rad(I) =
{
f ∈ K[x1, . . . , xn]

∣∣∣ there is a positive integer d s.t. fd ∈ I
}

.

The radical of an ideal is in fact an ideal itself:

Lemma 2.2. If I is an ideal, then so is Rad(I).
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Proof. Suppose that f ∈ Rad(I) and let h ∈ K[x1, . . . , xn]. From the definition of Rad(I),
we know that there is a positive integer d such that fd ∈ I. Since I is an ideal, we also
know that hdfd ∈ I. But this means that hf ∈ Rad(I) as well.

Let g ∈ Rad(I). Again from the definition of Rad(I), we know that there is a positive
integer e such that ge ∈ I. Note that (f+g)d+e =

∑d+e
i=0

(
d+e
i

)
f igd+e−i is a sum of terms each

of which is divisible by either fd or ge, so that (f + g)d+e ∈ I, and thus f + g ∈ Rad(I).

Note also that Rad(·) is idempotent: Rad(Rad(·)) = Rad(·).

3 The Hilbert Nullstellensatz

Note that Var(Ideal(f1, . . . , fm)) = Var(f1, . . . , fm). However, Ideal(Var(f1, . . . , fm)) con-
tains, but is not necessarily equal to, Ideal(f1, . . . , fm). So when does the sequence of
operations Ideal(Var(Ideal(Var(· · · )))) converge?

A first observation is that, given an ideal I, Ideal(Var(I)) contains not only I but also its
radical Rad(I). It actually turns out that Ideal(Var(I)) contains nothing more than Rad(I)
— and thus we learn than the alternate application of Ideal(·) and Var(·) “stabilizes” at
the radical.

Theorem 3.1 (Strong Hilbert Nullstellensatz (SHN)). For any ideal I in K[x1, . . . , xn],

Ideal(Var(I)) = Rad(I) .

In particular, Ideal(Var(Rad(I))) = Rad(I).

The proof of the SHN relies on the following simpler theorem, which states that the
only way that a variety of an ideal can be empty is if the ideal contains all the possible
polynomials:

Theorem 3.2 (Weak Hilbert Nullstellensatz (WHN)). For any ideal I in K[x1, . . . , xn],

Var(I) = ∅ ⇔ 1 ∈ I .

(Note that 1 ∈ I ⇔ I = K[x1, . . . , xn].)

Let us begin by showing the equivalence of the SHN and the WHN (and afterwards we
shall prove WHN):

Lemma 3.3. The SHN and the WHN are equivalent statements.

Proof. Both the SHN and the WHN have trivial directions (respectively, Ideal(Var(I)) ⊇
Rad(I) and Var(I) = ∅ ⇐ 1 ∈ I), so we only need to prove the equivalence of the non-
trivial directions of the SHN and the WHN (respectively, Ideal(Var(I)) ⊆ Rad(I) and
Var(I) = ∅ ⇒ 1 ∈ I).

The easy implication is SHN =⇒ WHN so let us begin with this one. So suppose that
Var(I) = ∅. Then, by the SHN, Rad(I) = Ideal(Var(I)) = Ideal(∅) = K[x1, . . . , xn]. Hence,
1 ∈ Rad(I) and thus 1 ∈ I, as claimed in the WHN.

So let us turn to the other implication, WHN =⇒ SHN; this direction follows what is
known as the Rabinowitsch trick [Rab30].
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Let f ∈ Ideal(Var(I)); we need to show that f ∈ Rad(I). If f is identically 0, we are
done; so assume that f is not identically 0. Consider the ideal J in K[x1, . . . , xn, y], where
y is an auxiliary variable, defined by J = Ideal(I, 1− yf).

Notice that Var(J) = ∅. Indeed, suppose by way of contradiction that there is (a1, . . . , an, b) ∈
Var(J); then (a1, . . . , an) ∈ Var(I) and thus f(a1, . . . , an) = 0, and thus 1−bf(a1, . . . , an) =
1− 0 = 1 6= 0; we conclude that Var(J) must indeed be empty.

By the WHN, since Var(J) = ∅, we know that 1 ∈ J , so that there must exist p ∈
K[x1, . . . , xn, y] and q1, . . . , qd ∈ I such that 1 = p(1 − yf) +

∑d
i=0 y

iqi. This polynomial
identity holds in K[x1, . . . , xn, y], and thus also in K(x1, . . . , xn)[y]; furthermore, since f is
not identically 0, 1/f is a valid element in K(x1, . . . , xn). By setting y = 1/f , we deduce
that 1 =

∑d
i=0 f

−iqi, and thus fd =
∑d

i=0 f
d−iqi, which means that fd is in I, and thus

f ∈ Rad(I), as we wanted to show.

Having established that the SHN and the WHN are equivalent statements, we concen-
trate on proving the WHN. The proof relies on the following lemma (which we shall prove
in the next section):

Lemma 3.4 (Extension Lemma). Let f1, . . . , fm ∈ K[x1, . . . , xn] be monic in xn and I =
Ideal(f1, . . . , fm). Let J = I ∩ K[x1, . . . , xn−1]. If (a1, . . . , an−1) ∈ Var(J) then there is
an ∈ K such that (a1, . . . , an) ∈ Var(I).

Proof of the WHN based on the Extension Lemma. Recall that the non-trivial direction of
the WHN is to show that if Var(I) = ∅ =⇒ 1 ∈ I. The proof is by induction on n.

The base case n = 1 is simple. In this case, I is a principal ideal, say, I = Ideal(f)
for some f ∈ K[x1]. Then Var(I) is the set of roots of f . Since K is algebraically closed,
every non-constant polynomial in K[x1] has a root in K, and thus f has to be a constant
polynomial. Thus, 1/f ∈ K and thus 1 = (1/f) · f ∈ I, as desired.

So suppose that the statement holds for n − 1. We wish to prove the statement for n.
Say that I = Ideal(f1, . . . , fm) (recalling that every ideal is indeed finitely generated) and
suppose that each fi is a non-constant polynomial of degree di (for otherwise we are done
for trivial reasons). For any b1, . . . , bn−1 ∈ K, consider the linear transformation

x1 = y1 + b1yn , x2 = y2 + b2yn , . . . , xn−1 = yn−1 + bn−1yn , xn = yn .

Note that, for i = 1, . . . ,m,

fi(x1, . . . , xn) =fi(y1 + b1yn, . . . , yn−1 + bn−1yn, yn)

=pi(b1, . . . , bn−1)y
di
n + terms in which deg(yn) < di .

Because each pi(b1, . . . , bn−1) is some polynomial in b1, . . . , bn−1 and K is algebraically
closed (and thus, in particular, infinite), there are choices of b1, . . . , bn−1 for which all
the pi(b1, . . . , bn−1) are not equal to 0. Since the constant polynomial 1 is not affected by
the transformation, this means that if 1 ∈ I ′ then 1 ∈ I, where I ′ = Ideal(f ′1, . . . , f

′
m) ⊆

K[y1, . . . , yn] is the ideal induced by the transformation by mapping each fi to a correspond-
ing monic polynomial f ′i . Also note that Var(I) = ∅ =⇒ Var(I ′) = ∅.

Let J ′ = I ′ ∩ K[x1, . . . , xn−1] and suppose by way of contradiction that 1 6∈ I ′ so that,
in particular, 1 6∈ J ′. By the inductive assumption, we know that there is (a1, . . . , an−1) ∈
Var(J ′). Then, by invoking the Extension Lemma on the monic f ′1, . . . , f

′
m, we know that

there is an ∈ K such that (a1, . . . , an) ∈ Var(I ′), which is a contradiction.
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4 Proving the Extension Lemma

Recall that, for a ring R, given two polynomials f and g in R[x] of positive degree n and
m respectively, their resultant, denoted Res(f, g), is the determinant of their corresponding
(n+m)× (n+m) Sylvester matrix. The Res(f, g) is in the ideal Ideal(f, g) and, moreover,
is equal to 0 if and only if there is h ∈ R[x] of positive degree that divides both f and g.

We begin by proving the Extension Lemma in the special case m = 2:

Proof of the Extension Lemma when m = 2. Define p(x1, . . . , xn−1) = Resxn(f1, f2). Since
p ∈ I = Ideal(f1, f2), we also know that p ∈ J = I ∩K[x1, . . . , xn−1]. Since (a1, . . . , an−1) ∈
Var(J), we have that p(a1, . . . , an−1) = 0. Define h1(xn) = f1(a1, . . . , an−1, xn) and
h2(xn) = f2(a1, . . . , an−1, xn). Since f1 and f2 are monic in xn, both h1 and h2 have
positive degree, and thus Resxn(h1, h2) = Resxn(f1, f2)|a1,...,an−1 = p(a1, . . . , an−1) = 0.
Thus, there must exist g(xn) ∈ K[xn] dividing both h1 and h2. Since K is algebraically
closed, there must exist an ∈ K such that g(an) = 0.

Therefore, h1(an) = h2(an) = 0, and we conclude that f1(a1, . . . , an) = f2(a1, . . . , an) =
0, and (a1, . . . , an) is the point in Var(I) that we wanted.

We now prove the general case of the Extension Lemma by building on ideas for the
m = 2 case:

Proof of the Extension Lemma. As before, let I = I(f1, . . . , fn) ⊆ K[x1, . . . , xn] with f1, . . . , fm
all monic in xn. Define J = I ∩ K[x1, . . . , xn−1] and let (a1, . . . , an−1) ∈ Var(J). Consider
the new ideal I ′ = Ideal(f1, F ) ⊆ K[x1, . . . , xn, y2, . . . , ym] where F (x1, . . . , xn, y2, . . . , ym) =∑m

i=2 fi(x1, . . . , xn)yi.
Define p(x1, . . . , xn−1, y2, . . . , ym) = Resxn(f1, F ). Note that p(a1, . . . , an−1, y2, . . . , ym)

is identically zero. To show this, it suffices to prove that for all b2, . . . , bm ∈ K we
have p(a1, . . . , an−1, b2, . . . , bm) = 0. To see this, notice that p(x1, . . . , xn−1, b2, . . . , bm) =
Resxn(f1, F (x1, . . . , xn, b2, . . . , bm)) ∈ Ideal(f1, F (x1, . . . , xn, b2, . . . , bm)) and thus is also in
the ideal I = Ideal(f1, . . . , fm). We conclude that p(x1, . . . , xn−1, b2, . . . , bm) ∈ J , so that
p(a1, . . . , an−1, b2, . . . , bm) = 0.

Next, define f ′1(xn) = f1(a1, . . . , an−1, xn) and H(xn, y2, . . . , ym) = F (a1, . . . , an−1, xn, y2, . . . , ym).
Define L = K(y2, . . . , ym) and note that f ′1, H ∈  L[xn]. Due to the previous paragraph, we
know that f ′1 and H share a root an ∈ L. Since all the roots of f ′1 are in K, we know that
in fact an ∈ K.

We conclude by noting that (xn−an) divides both f1(a1, . . . , an−1, xn) and
∑m

i=2 fi(a1, . . . , an−1, xn)yi
so that (xn − an) divides each fi(a1, . . . , an−1, xn). The point (a1, . . . , an) is the point in
Var(I) that we were looking for.

5 Degree Bounds for the Hilbert Nullstellensatz

If f1, . . . , fm ∈ K[x1, . . . , xn] each have degree at most d and there exist q1, . . . , qm ∈
K[x1, . . . , xn] such that 1 =

∑m
i=1 qifi, then what is the smallest degree bound Dn,m,d on

the qi? The smaller Dn,m,d can be shown to be, the easier it is to determine whether a sys-
tem of polynomial equations has a solution; indeed, by the WHN, 1 ∈ Ideal(f1, . . . , fm)⇔
Var(f1, . . . , fm) = ∅.
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• By invoking the degree bound analysis of Hermann [Her26] for the ideal membership

problem, we know that Dn,m,d ≤ (mdn)2
O(n)

.

• Using complex analysis, Brownawell [Bro87] showed that Dn,m,d ≤ (md)n; this bound
is good enough to put the problem of deciding whether 1 ∈ I in PSPACE (as opposed
to EXPSPACE with Hermann’s weaker bound).

• Using cohomology, János [Kol88] showed the same bound, Dn,m,d ≤ (md)n.

• Using combinatorial counting arguments, Dubé [Dub93] also showed the same bound,
Dn,m,d ≤ (md)n.

• Under the Generalized Riemann Hypothesis, Koiran [Koi96] showed that deciding
whether Var(f1, . . . , fm) = ∅ is in AM (can be decided via an Arthur-Merlin protocol
with two messages in which Arthur moves first).

6 Quantifier Elimination

Given f1, . . . , fm ∈ K[x1, . . . , xn], the question of whether Var(f1, . . . , fm) = ∅ is the ques-
tion of whether there is (a1, . . . , an) ∈ Kn with f1(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0.

The existential quantification in such a question is merely the “first level” of a question
with more quantifiers we could ask. For example, at the second level, we could ask the
following question:

Is it the case that ∀ (a1, . . . , an) ∈ Kn ∃ (b1, . . . , bn) ∈ Kn s.t


f1(a1, . . . , an, b1, . . . , bn) = 0
...

fm(a1, . . . , an, b1, . . . , bn) = 0

?

More generally, we could also consider both equalities and disequalities (i.e., asking when a
certain polynomial is not equal to 0).

How much harder are problems with such additional quantifiers relative to the basic
existential question? It turns out that such problems can also be solved reasonably efficiently
by showing that quantifiers can be eliminated with not too much overhead.
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