
6.S897 Algebra and Computation April 23, 2012

Lecture 19 - Computing Partial Derivates and Depth Reduction

Instructor: Madhu Sudan Scribe: Travis Hance

1 Overview

In this lecture we cover:

• [1] If we can compute polynomial f with an arithmetic circuit of size s, then we can
compute all of its partial derivatives (∂f

∂x1
, . . . , ∂f

∂xn
) in size O(s).

• [3] Depth reduction: If f can be computed with a circuit of size s, then f can be
computed in size poly(s) and depth O(log2 s).

2 Clarification of arithmetic circuit model

We might ask the question: how universal are arithmetic circuits for universal computation?
We cannot compute everything using arithmetic circuits; for instance, we cannot compute
square roots or compute the gcd of two polynomials, because whatever we compute must
be a polynomial in the inputs.

However, we may wonder about the something such as the determinant: it is a polyno-
mial in its input variables, and there is a polynomial time algorithm (Gaussian elimination)
to compute it. However, this algorithm involves branching: we have to test whether a value
is nonzero in order to see if it can be used as a pivot. However, this is not an issue: if we
just make a circuit to compute the determinant treating input variables as formal variables,
then we do not need to use branching. In the end we will have a circuit computing f/g
which equals the determinant wherever it is defined. We already know from the last lecture
that we can eliminate division and get a circuit for computing determinant.

This method works in general for computing polynomials with arithmetic circuits if you
can compute them with branches of the form “does yi = 0?”.

Also note that there are known explicit curcuits for computing the determinant by
inductively computing the characteristic polynomial [2].

3 Computing partial derivates [1]

The key idea is to use a “top-down” approach rather than a “bottom-up” approach. That
is, instead of computing, for each gate, the partial derivatives of that gate with respect to
the input variables, we compute the partial derivatives of the output with respect to gates.

Suppose that a polynomial f(x1, . . . , xn) is computed by a circuit of size s, that is, a
series of s steps of the form yi = yj♦yk (or yi = yj♦xk or yi = xj♦xk) where ♦ ∈ {+,×}.
Rather than thinking of the end result ys as a function of the input variables x1, . . . , xn,
we imagine a function g(x1, . . . , xn, y1, . . . , ys) which computes the end result that we can
write in many different ways. More specifically,

1

• Let gs(x1, . . . , xn, y1, . . . , ys) = ys

• For 1 ≤ i ≤ s, let gi−1 = gi|yi←yj♦yk , that is, gi is obtained by substituting yj♦yk for yi
in gi+1, in the circuit, yi is computed as yj♦yk. (By abuse of notation, we will always
write yj and yk when in fact either could be one of the inputs x1, . . . , xn instead.)

Thus for any i, gi is a polynomial in x1, . . . , xn, y1, . . . , yi, and so g0 is the original polynomial
f in only the input variables. Thus our goal is to compute(

∂g0
∂x1

, . . . ,
∂g0
∂xn

)
The idea is to compute { ∂gi∂yj

(x1, . . . , xn, y1, . . . , ys)} for all i, j. Note that while there are

clearly more than O(s) such derivatives, many of them will be equal and so we will only
need O(s) gates.

Since gs(x1, . . . , xn, y1, . . . , yn) = ys, we initially we have ∂gs/∂ys = 1, and ∂gs
∂yj

= 0 for

all j < s.
Now consider gi−1 for i ≤ s. Recall that gi−1 = gi|yi←yj♦yk . Naturally, we have

∂gi−1
∂yi

= 0 (1)

since yi does not appear anywhere in the polynomial gi−1. Since we are just making a
substitution yi ← yj♦yk, by the chain rule,

∂gi−1
∂yj

=
∂gi
∂yj

+
∂gi
∂yi
·
(
∂

∂yj
(yj♦yk)

)
(2)

where of course (∂/∂yj)(yj + yk) = 1 and (∂/∂yj)(yj × yk) = yk. We get a similar equation
for ∂gi−1/∂yk. Finally, for all other y` (` 6= i, j, k) we get

∂gi−1
∂y`

=
∂gi
∂y`

(3)

Remember that in identities (2) and (3), the equality is not of formal polynomials in
x1, . . . , xn, y1, . . . , ys but y1, . . . , ys should be considered as polynomials in x1, . . . , xn.

Thus, using (1), (2), and (3) we can compute all the derivatives ∂gi−1/∂yj for all j from
the partial derivates ∂gi/∂yj , using only a constant number of gates. Thus in O(s) gates
we can compute the partial derivates ∂g0/∂xj as desired.

4 Depth Reduction [3]

In this section we show the following result:

Theorem 4.1. Let φ be a circuit computing a polynomial f . If the size of φ is s and
deg f ≤ s then there is a circuit computing f with size poly(s) and depth O(log2(s)).

2

From the last lecture we know that we there are small arithmetic circuits computing
the homogeneous parts of f . Thus we assume that f is homogeneous and that φ is a
homogeneous circuit, i.e., the output of each gate is a homogeneous polynomial.

Now some notation: for any gate v, let fv be the polynomial in x1, . . . , xn computed at
gate v. Furthermore, if v and w are gates, we can think of v as computing a polynomial from
inputs x1, . . . , xn, w by “cutting off” the gate w and pretending its output is just another
input to the circuit. Thus, we can write fv(x1, . . . , xn) = gv,w(x1, . . . , xn, w)|w=fw . We then
define

∂wfv =
∂gv,w
∂w

∣∣∣∣
w=fw

(4)

This is the notion of a partial derivative of a gate with respect to another gate that we will
use in this construction.

To compute f using polylogarithmic depth, we will proceed in stages. At stage i we will
compute:

• Compute all polynomials fv such that 2i < deg fv ≤ 2i+1.

• Compute all ∂wfv such that 2i < deg v − degw ≤ 2i+1 and degw ≤ deg v ≤ 2 degw.

Each stage will be done with poly(s) size and with a depth-2 (unbounded fan-in) circuit. Any
unbounded fan-in gate can we replaced with a constant fan-in, logarithmic depth circuit.

To compute all these things, we rely on the following:

Lemma 4.2. Let

Gm
def
= {t : t = t1 × t2, deg(t) > m,deg(t1),deg(t2) ≤ m}. (5)

Then,

(i) For all gates v with m < deg(fv) ≤ 2m, we have

fv =
∑
t∈Gm

ft∂tfv (6)

(ii) For all gates v, w with deg(w) ≤ m < deg(v) ≤ 2 deg(w), we have

∂wfv =
∑
t∈Gm

(∂wft)(∂tfv) (7)

Proof. (i) We use induction on the depth of v. The base case has v ∈ Gm. For this, we
want to show that

fv = fv · ∂vfv +
∑

t∈Gm\{v}

ft · ∂tfv (8)

but this is true because ∂vfv = 1, and since there can be no path in φ from t to v for
any other t, we must have ∂tfv = 0.

3

For induction, suppose v = v1♦v2, where we already know the statement (6) holds for
v1 and v2. In the ‘+’ case, we have fv = fv1 + fv2 and so

fv =
∑
t∈Gm

ft∂tfv1 +
∑
t∈Gm

ft∂tfv2

=
∑
t∈Gm

ft(∂tfv1 + ∂tfv2)

=
∑
t∈Gm

ft(∂tfv)

For the ‘×’ case, assume without loss of generality that deg fv1 ≥ deg fv2 . Then we
must have deg(v2) ≤ m and so ∂tfv2 = 0. Thus, by the product rule,

∂tfv = (∂tfv1)(fv2) + (∂tfv2)(fv1) = (∂tfv1)(fv2). (9)

Hence, fv = fv1fv2 so

fv =

(∑
t∈Gm

ft∂tfv1

)
fv2

=
∑
t∈Gm

ft · (fv2∂tfv1)

=
∑
t∈Gm

ft∂tfv

which completes the induction step.

(ii) We simply take the derivative of the result from (i). Expanding with the product rule
gives

∂wfv =
∑
t∈Gm

((∂wft)(∂tfv) + (ft)(∂w∂tfv)) (10)

But ∂w∂tfv is always 0 since deg(v) ≤ 2 deg(w) < deg(w)+deg(t). Thus this simplifies
to the desired result.

Now, Lemma (4.2) immediately lets us complete the construction outlined above, thus
proving Theorem (4.1).

References

[1] W. Baur, V. Strassen. The complexity of partial derivatives. Theoretical Computer Sci-
ence, Volume 22, Issue 3, February 1983, Pages 317-330, ISSN 0304-3975, 10.1016/0304-
3975(83)90110-X.

[2] S. J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Inf. Prod. Letters 18, pages 147-150, 1984.

[3] L. G. Valiant, S. Skyum, S. Berkowitz, C. Rackoff. Fast parallel computation of polyno-
mials using few processors. SIAM J. Comput. 12(4), pp. 641-644, 1983.

4

