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1 Overview

Today we talk about algebraic circuit lower bounds. Specifically we will show that computing the
function f(x1, . . . , xn) = (xr1, . . . , x

r
n) requires circuits of size Ω(n log r). We will describe two proofs

of this method: one is due to Strassen, which uses Bezout’s theorem, and the other is by Smolensky,
which uses elementary combinatorics. Between the two will be a brief interlude about Bezout’s
theorem.

2 Strassen’s Proof

We will be working over algebraically closed fields K. Let C be an algebraic circuit of size s computing
the function f(x1, . . . , xn) = (xr1, . . . , x

r
n). The inputs to this circuit are x1, . . . , xn, and associate

with each gate variables y1, . . . , ys, and assume the variables ys−n+1, . . . , ys correspond to the output
gates.

For each gate yi we can associate a polynomial Pi(x,y) such that if gate i were, say, adding the
outputs of gates j1 and j2, then we set Pi(x,y) = yi−(yj1 +yj2). Similarly, if gate i were multiplying
inputs x1 and x2 together, then we set Pi(x,y) = yi − (x1 × x2). On input x1, . . . , xn, one can view
the operation of the circuit as solving the system of equations {Pi(x,y) = 0} for the unique setting
of the variables {yi}.

To obtain a lower bound on the size s of the circuit, we restrict our attention to instances when
the circuit C will evaluate to the all 1’s. That is, we will only consider inputs x1, . . . , xn such that
(xr1, . . . , x

r
n) = (1, . . . , 1). Denote this restricted set of inputs S. Since K is algebraically closed, we

know that |S| = rn. By our characterization above, this restriction is equivalent to restricting the
output gates ysn+1, . . . , ys to 1. Then, the Pi’s become polynomials P̃i(x1, . . . , xn, y1, . . . , ys−n).

Observe that for every (x1, . . . , xn) ∈ S, there is still a unique setting of the y1, . . . , ys−n that
satisfy the equations P̃i(x, y1, . . . , ys−n) = 0. Furthermore, for (x1, . . . , xn) /∈ S, there is no solution
of yi’s that will satisfy the equations. Thus the system of equations P̃i(x, y1, . . . , ys−n) = 0 has
exactly |S| = rn solutions.

Theorem 1 (Classical Bezout’s Theorem) Let K be an algebraically closed field. Let f1, . . . , fm ∈
K[x1, . . . , xn] be such that total degree of fi is at most di. Then, the number of solutions to the equa-
tions f1(x) = 0, . . . , fm(x) = 0 is either infinite or at most

∏
di.

We can put Bezout’s theorem to use by noting that the total degree of Pi is at most 2, and thus
deg(P̃i) ≤ 2 as well. Since we have argued that the number of common zeroes to {P̃i} is finite,
Bezout’s theorem gives that there must be at most 2s solutions. We know that there are exactly rn

solutions, so this gives that s ≥ n log r.

Note about the algebraic closure of K: This lower bound applies even if the field K were not al-
gebraically closed, but only if the circuit C computes the formal polynomials (xr1, . . . , x

r
n). This is

because we can “lift” the circuit C to work in the closure of K, and since C computes the formal
polynomials xri , it will work correctly in the closure, and thus we can apply the Strassen’s proof to
show that C must have a superlinear size lower bound.
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3 Bezout’s Theorem

Bezout’s theorem is an important result from algebraic geometry that, while apparently simple to
state, does not admit a similarly simple proof. Here we will provide some additional remarks about
the theorem.

How might one try to prove Bezout’s theorem? A natural approach would be to perform induction
on the number of polynomials. This could get devilishly complicated. Instead, we will rephrase the
theorem in the more modern, more versatile language of algebraic geometry, and show how the
classical version of Bezout’s theorem (as stated above) can be proved from that.

This will require a few definitions.

Definition 2 (Variety) Let k be a field. A set V ∈ kn is a variety if and only if there exists
polynomials f1, . . . , fm ∈ k[x1, . . . , xn] such that v is the common zero set of the polynomials.

Definition 3 (Dimension of a variety) Let k be a field, and let V ∈ kn be a variety. The di-
mension of V is

dim(V ) = argmin
d
∃ affine space A ⊆ kn of codimension d such that |A ∩ V | is finite.

Definition 4 (Degree of a variety) Let k be a field, and let V ∈ kn be a variety. The degree of
V is

deg(V ) = max
Affine space A

codim(A)=dim(V )
|A∩V |≤∞

|A ∩ V |

Armed with these definitions, we can state the “strong” version of Bezout’s theorem, and show how
it implies the “classical” theorem.

Theorem 5 (Strong Bezout’s Theorem) Let k be an algebraically closed field. Let V1, V2 be
varieties over k. Then deg(V1 ∩ V2) ≤ deg(V1) · deg(V2).

Corollary 6 Strong Bezout’s theorem implies the classical version.

Proof Let k be an algebraically closed field, and let f1, . . . , fm be polynomials in k[x1, . . . , xn].
Let Vi = V (fi) = {x ∈ kn | fi(x) = 0}. Let V = V (f1, . . . , fm) = V1 ∩ · · · ∩ Vm. If dim(V ) > 0, then
|V | must be infinite, by definition. On the other hand, if dim(V ) = 0, then |V | is finite (because the
only codimension 0 affine space is kn itself). Observe that in this case, deg(V ) = |V |, and by the
strong Bezout’s theorem, deg(V ) ≤

∏
deg(Vi).

The dimension of each of the Vi is clearly n− 1. In general, |Vi| will be infinite, so dim(Vi) < n.
Take an affine space A of codimension n − 1, i.e., a line. A ∩ Vi is the set of 0’s of the restriction
of fi to the line A, which is a univariate polynomial. By the Fundamental Theorem of Algebra,
this has at most deg(fi) roots, so |A ∩ Vi| is finite and thus dim(Vi) = n− 1. This also shows that
deg(Vi) = deg(fi).

This concludes the proof; the number of common zeroes of f1, . . . , fm is either infinite or at most∏
deg(fi).

There is another formulation of Bezout’s theorem that says the number of isolated zeroes of a
system of polynomial equations is bounded by the product of the degrees of the polynomials, even
if the total number of solutions is infinite.
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4 Smolensky’s Proof

Smolensky’s proof can be found in his short 4-page paper “Easy lower bound for a strange compu-
tational model”. The lower bound is indeed easy, but the computational model is not that strange:
instead of considering general algebraic circuits, we consider consider a restricted kind. The gates
available for use are: 1) Addition gates with fan-in 2 and fan-out 1, 2) Multiplication gates with
fan-in 2 and fan-out 1, and 3) Duplicator gates with fan-in 1 and fan-out 2, which will take x 7→ x, x.
Smolensky proves an Ω(n log n) lower bound on the number of duplicator gates in circuits of this
kind that compute f(x1, . . . , xn) = (xn1 , . . . , x

n
n) – and hence a lower bound on the circuit size.

This lower bound will then also apply to general circuits, because any general circuit C (where
fan-out can be arbitrary) of size s can be converted to a restricted circuit C ′ with O(s) duplicator
gates. Suppose gate g in C connected to gates h1, . . . , hk. If k > 2, we can introduce k−2 duplicator
gates to reduce the fan-out of g to 2. Each duplicator gate becomes associated with an hi for i > 2.
Thus each gate in C has at most 2 duplicator gates associated with it. Thus, if C ′ must have at
least s′ duplicator gates, then C must have size Ω(s′).

To obtain the lower bound, we will need the following lemma.

Lemma 7 Let C be a circuit with

• Inputs x1, . . . , xn,

• Outputs y1(x1, . . . , xn), . . . , ym(x1, . . . , xn), and

• Duplicators D1, . . . , Ds that duplicate the polynomials d1(x), . . . , ds(x), where di(x1, . . . , xn) is
the unique polynomial that describes the input to duplicator gate Di on input x1, . . . , xn.

Let T ∈ F[z1, . . . , zm] with individual degrees less than k. Define t(x1, . . . , xn) := T (y1(x), . . . , ym(x)).
Then there exists a polynomial τ in n+ s variables such that

t(x1, . . . , xn) = τ(x1, . . . , xn, d
k
1(x), . . . , dks(x))

such that the individual degrees of the first n variables in τ is less than k and at most 1 in the
remaining s variables.

We will apply this lemma to argue about circuits C that compute the outputs y1 = xn1 , . . . , yn =
xnn, as well as the outputs yn+1 = x1, . . . , y2n = xn (which we can compute with the help of n extra
duplicators). Consider all polynomials T ∈ F[z1, . . . , z2n] with individual degree less than n in each
variable. Define t(x1, . . . , xn) := T (xn1 , . . . , x

n
n, x1, . . . , xn).

Note that for every polynomial p in x1, . . . , xn with individual degrees less than n2, there is a
polynomial T (and a corresponding t) that will instantiate p. Thus the dimension of the space of
polynomials T is at least (n2)n. On the other hand, the above lemma gives an upper bound on the
dimension of the space of polynomials t. The dimension of the space of polynomials t is at most
the dimension of the space of τ polynomials, which is kn2s (by counting the maximum number of
distinct monomials of τ). Solving for s, we get that s ≥ Ω(n log n). Subtracting off the n extra
duplicators that we added will not affect this bound asymptotically.

We now prove the lemma.
Proof Imagine that the circuit C is oriented so that the inputs are at the bottom, and the
outputs are at the top. We will divide the circuit into levels so that at each level there is exactly
one gate (an adder, multiplier, or duplicator). We will prove this by induction on level, starting
at the top. At each stage of the induction, we imagine that there is a horizontal line that cuts
the circuit into a top half and a bottom half. We will denote the wires that cross this line to be
z1, . . . , zp, and the duplicator gates above this line as D1, . . . , Dq, which duplicate the polynomials
d1(z1, . . . , zp), . . . , dq(z1, . . . , zp). Intuitively, the top half is a circuit with inputs z1, . . . , zp and
duplicators D1, . . . , Dp. Furthermore, each of the zi’s are polynomials in the inputs x1, . . . , xn.
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At the top level, the circuit is simply the empty circuits with inputs z1 = y1, . . . , zm = ym and
outputs y1, . . . , ym, and no duplicators. Thus τ(z1, . . . , zm) = τ(y1, . . . , ym) is simply T (y1, . . . , ym).
Since each of the yi’s have degree less than k in T , the same is true of τ . Thus we have established
the base case.

Assume that we have represented the polynomial t = τ(z1, . . . , zp, d
k
1 , . . . , d

k
q ) at some level.

We then move the line down, which will move past one gate. Suppose the gate were an adder
or a multiplier. The output of this gate was some variable zi; now, this variable will be replaced
by two new variables (corresponding to the inputs to the gate). Call these two new variables zi1
and zi2 . Then, we can define τ ′(z1, . . . , zi−1, zi1 , zi2 , zi+1, . . . , zp, d

k
1 , . . . , d

k
q ) := τ(z1, . . . , di−1, di1 +

di2 , di+1, . . .) (if the gate were an addition gate). It is easy to verify that τ ′ indeed satisfies the
requirement that each z variable has degree less than k, and that t = τ ′.

Now suppose the gate were a duplicatorD instead. Suppose the duplicated variables were z1 = z2.
Then we can write τ ′(z1, z3, . . . , δ1, . . . , δq) = τ(z1, z1, z3, . . . , δ1, . . . , δq). However, τ ′’s degree in z1
might be higher than k – though it will be less than 2k. Since we have added one more duplicator
above the line, we can add another variable δq+1 to create a polynomial τ̃(z1, z3, . . . , δ1, . . . , δq, δq+1)
that is τ ′ but with all factors of zk1 replaced by δq+1. This replacement can happen at most once in
each monomial of τ ′. Since the duplicator D is duplicating the polynomial dq+1 = z1, we have that

t = τ̃(z1, z3, . . . , d
k
1 , . . . , d

k
q , d

k
q+1)

and because of the replacement, τ̃ has individual degree in each variable zi to be less than k, and
the degree of each dj is at most 1.

By induction, at the the last level, the wires z1, . . . , zp are the inputs themselves x1, . . . , xn,
and we have shown that t(x1, . . . , xn) = τ(x1, . . . , xn, d

k
1 , . . . , d

k
s) for a polynomial τ with the right

degrees.
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