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1 Overview

Today we will cover an application of algebra to computing, specifically talking about the
constructions of error correcting codes. Specifically, we aim to cover

• Reed-Solomon Codes

• List decoding of Reed-Solomon codes

• Ideal error correction

We will mention the frontier of this work, encapsulated in folded Reed-Solomon codes, and
how this frontier improves on what we show today.

2 Coding Theory

We first motivate coding theory as a topic. Consider the problem of storing data on a
CD-ROM (or a modern variant). Such physical devices can be corrupted over time due
to mistreatment or decay of physical structure. That is, errors will occur in our stored
message. Thus, if we want to recover the original message in the future we need to do
something to cope with such errors. The main idea is that we will assume that the error
rate is somehow bounded, so errors cannot be arbitrarily complicated. In such a situation,
we hope to add a small amount of redundancy in our dataset such that this will still allow
recovery in the face of errors.

Formally, we have some universe of messages, denoted U , and wish to store it. As is
typical, we encode the messages as strings over some finite alphabet Σ. So our encoding
map will be Enc : U → Σn. Typically, we will want Σ to be {0, 1}. However, other such
Σ can be useful if we have a physical medium (such as a CD-ROM) that naturally has a
larger Σ. CD-ROM’s are this way because their errors come in bursts (think of scratches
on a CD), so even though the CD is actually encoded in bits, the errors are better modeled
as errors on chunks of bits. There are other reasons to take Σ larger. One is that it allows
interesting families of codes to be defined, such as the Reed-Solomon codes we shall soon
see. The other is that one can often then convert codes over large Σ to codes over {0, 1},
while retaining interesting properties.

The notion of error we will use is the Hamming metric, given by ∆(x, y) = |{i : xi 6= yi}|,
for x, y ∈ Σn. We shall denote C ⊆ Σn as the image of the encoding function Enc, and call
C the code. The minimum distance of the code is defined as ∆(C) = minx 6=y∈C . Typically a
code will have Σ as some finite field, and oftentimes the universe U can be identified with
some Σk. In such a situation, we have an [n, k, d]q code, for a code Σk = C ⊆ Σn, with
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minimum distance d, over the alphabet Σ = Fq. A large minimum distance means that
the codewords are well-separated according to the hamming metric, and thus it takes many
errors to confuse one codeword with another. Putting such reasoning together, we get

Lemma 2.1 (Hamming). If the minimum distance of a code C is d then one can (informa-
tion theoretically) correct up to b(d− 1)/2c errors.

Note that this decoding is only information theoretic. That is, if there are less than
b(d − 1)/2c errors then there is a unique codeword that we can decode to. However, the
above lemma, which is geometric, does not say how to find that codeword. One of the
challenges of coding theory is to develop codes with efficient decoding algorithms. One of
the other challenges is to balance the various parameters of interest. That is, we want to
maximize the rate k/n of a code for any given minimum distance d. Intuitively, there must
be some limit to this rate for any such d, as we must add some redundancy to ensure the
distance property. There are many results showing this to be the case. We prove one here,
called the Singleton bound (named after an individual named Singleton).

Lemma 2.2 (Singleton Bound). In an [n, k, d]q code, we have that n ≥ k + d− 1.

Proof. Let C ⊆ Σn be an [n, k, d]q code, so that |C| = qk. Consider the projection map
π : Σn → Σk−1 that takes a codeword and drops the last n − (k − 1) symbols. By the
pigeonhole principle, we have that there must be x 6= y ∈ C such that π(x) = π(y). Thus
x and y agree on the first k − 1 coordinates, so that ∆(x, y) ≤ n − (k − 1). However,
d ≤ ∆(x, y), giving the bound.

Perhaps somewhat surprisingly, this bound is tight, in that Reed-Solomon codes meet
it, as we shall now see.

3 Reed-Solomon Codes

Reed-Solomon codes, defined in the 1960’s, are one of the most simple applications of algebra
to coding theory. Here, we take Σ = Fq, for n ≤ q. Take α1, . . . , αn ∈ Fq to be distinct.
Our messages (m0, . . . ,mk−1) we be encoded as the evaluations (p(α1), . . . , p(αn)), where p
is the polynomial p(x) =

∑k−1
i=0 mix

i.
To analyze the distance of this code, note that two polynomials of degree < k can agree

in at most k − 1 spots. So two messages m and m′ must disagree in at least n − (k − 1)
evaluations, so that is the distance of the code. We see that this meets the Singleton bound.
Codes that meet the Singleton bound are called maximum distance separable (MDS) codes,
and there are results that show that all such codes are essentially Reed-Solomon codes.

4 List Decoding Reed-Solomon Codes

We now show how to decode Reed-Solomon codes, in a model called list decoding. Specifi-
cally, we are given points (α1, β1), . . . , (αn, βn) where the αi are the evaluation points, and
the βi are the corrupted evaluations of our message polynomial. Let k be the degree bound,
t the number of errors we allow, and a = n − t be the agreement parameter. We seek to
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find polynomials p of degree < k with certain amounts of agreement with the (αi, βi) pairs,
that is, |{i : p(αi) = βi}| ≥ a. There are several different regimes where this is interesting.

The first regime is a = (n+ k)/2. This is the unique decoding regime, where there is at
most one such polynomial p.

The second regime is a >
√

2kn. In this regime, an inclusion-exclusion type argument
(known as the Johnson bound) shows that there are at most 2

√
n/k such polynomials

with this level of agreement. The argument relies on the fact that we are asking to fit
many polynomials into a smallish hamming ball, but that each polynomial must still be
well-separated from each other.

In the regime where a <
√
kn, current techniques can show that there are at most n2

such polynomials.
We note that the above regimes essentially constitute all of our knowledge about decod-

ing Reed-Solomon codes.
We now comment on why one would want to actually perform list-decoding instead

of just unique-decoding. Unfortunately there is no quick black-box motivation, indicating
why list-decoding is the correct idea. However, there are black-box applications known.
Typically, they use the following idea: list-decoding can still function in the presence of
more errors than unique decoding can. Thus, when there are many errors one wants to
still be able to do something, and list decoding is that something. Once one gets a list
of candidate messages, it is sometimes, but not generically, possible to prune down the
candidates to get the correct message. Often, the applications of list-decoding have some
auxiliary problem structure that allow this pruning to be done (eg. the messages are all
English sentences).

The paradigm of the decoding algorithms is to find a nice algebraic “explanation” for the
data. One explanation would be a polynomial p̂ such that p̂(αi) = βi for each i. However,
this is not robust to error. For if we start out with a degree < k polynomial p and corrupt
some values we might only get a degree n explanation in the above sense. But we really
want the explanation to be “low degree”, that is, of degree around k + t, where t is the
number of errors. In what follows, think of k = n1/10.

To achieve the robust low-degree explanation, the works of Petersen (1960), Berlekamp/Massey
(1972), Welch-Berlekamp (1986) and Gemmel-Sudan (1992) used the idea of a rational
function (a ratio of polynomials) instead of just a polynomial. Specifically, they see to get
non-zero polynomials A and B such that B(αi)βi = A(αi) for all i. The works of Sudan
(1997) and Guruswami-Sudan (1998) generalize this to explanations that can depend more
than just linearly on the βi. Specifically, we seek to find a bivariate non-zero polynomial Q
such that Q(αi, βi) = 0 for all i.

We can now describe the decoding algorithm (of Sudan):

1. find a non-zero Q such that Q(αi, βi) = 0 for all i, with the total degree of Q to be at
most D

2. factor the bivariate polynomial Q(x, y) and output any factor of the form y − p(x),
such that p has the desired agreement

Note that the second item is doable, as we saw earlier in the course how to factor bivariate
polynomials. As for the first item, note that we are seeking a non-zero solution to a homo-
geneous system of linear equations, where the variables are the coefficients of Q. By basic
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linear algebra, we see that if there are more variables then equations then such a Q will
exist, and furthermore is findable by Gaussian elimination. Note that there are n equations
and

(
D+2
2

)
variables, so if D >

√
2n then there is such a non-zero Q. We now need to argue

correctness, that is, all such polynomials p with sufficient agreement will appear as a factor
y − p(x) of any such Q (note that there could be many such Q and it is not clear which
to choose. The following lemma says that any such Q will work). This is given by the
following lemma.

Lemma 4.1. If |{i : p(αi) = βi}| ≥ a > Dk then y − p(x)|Q, for any Q such that
Q(αi, βi) = 0 for all i.

Proof. There are two ways to prove this. The first is to observe that Q(x, p(x)) is of degree
at most Dk and has more than Dk roots and thus must be identically zero, and as such
y − p(x) divides Q(x, y).

Another way is to use Bezout’s theorem in the plane. For we have two curves, y − p(x)
and Q(x, y) that have more than Dk common zeroes, and Dk is the product of their degrees.
This means, by Bezout’s theorem, that they share a common factor. However, as y − p(x)
is irreducible, the claim follows.

Note that this allows us to correct from agreement a ≥ k
√

2n, and get at most
√

2n
polynomials, as this is the degree of Q and each factor is of degree 1. One can do better
by using a notion of “weighted degree”. For when we take the polynomial Q(x, y) and
substitute p(x) for y we are not using the degrees of x and y in a balanced way. Thus,
in constructing Q, one can define the weighted degree of xiyj to be i + kj and then ask
for Q to be of weighted degree ≤ D. When doing this, we can then correct from O(

√
kn)

agreement, which is stronger than what we derived above.

5 Ideal Error-Correcting Codes

We now abstract the decoding process we just performed, to understand the essence of what
was done. We begin by noting that for a polynomial p(x), the residue of p after taking it
modulo x− α is just the value p(α). So the Reed-Solomon code can be viewed as taking a
polynomial and encoding it by taking it modulo several ideals. We now abstract this.

Let R be a “nice” ring. Let M ⊆ R be a finite subset of R, which will be our message
space. Note that R itself might be infinite. Let I1, . . . , In be ideals of R, such that the
quotient rings R/Ij are all finite. That is, the number of distinct equivalence classes m+ Ij
is finite for each j. Further, we shall assume each such quotient ring is “small”, as they will
form our alphabet symbols. We shall encode m ∈M by the residues (m+ I1, . . . ,m+ In).

We now apply this to get a new family of codes, called the Chinese Remainder Code.
Recall that the rings Fq[x] and Z share many properties, and things true in one are usually
true in the other. As Reed-Solomon codes operate in the former ring, we seek to find their
analogue over Z. The message space over Fq[x] is the space of all degree < k polynomials,
and we can take the message space over Z to be the numbers {1, . . . ,K = 2k}. The ideals
over Fq[x] are the maximal/prime ideals 〈x − αi〉 for αi ∈ F, so over Z we can take the
maximal/prime ideals 〈pi〉 for primes pi (say the first n primes). Thus, we encode an
integer m by (m mod p1, . . . ,m mod pn). Note that if n ≥ k then the Chinese Remainder
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Theorem tells us that recovery in the presences of no errors is possible, as
∏

i pi ≥ 2n ≥ 2k.
Thus, we may naturally ask what happens in the presences of errors, and how we may
decode from such errors.

We now talk abstractly about how this decoding may be done, and what properties of
the ring we need. The first property we need is a notion of size, such that size(a + b) ≤
size(a) + size(b) and size(ab) ≤ size(a)size(b). For the integers, the absolute value plays
the role of this size function, and for Fq[x] the function p 7→ 2deg(p) will work. We also
need that all of the messages in M are “small” with respect to this size measure, and are
of size at most K. We will also need that the number of small elements of the ring grows
sufficiently fast. The main property that we will use is that if an element a is in all of the
ideals I1, . . . , In then a must either be zero or have large size. As we will restrict ourselves
to small messages, this will imply a is zero. This property gives unique decoding of the
code with no errors, for two elements a and b cannot be the same modulo all of the ideals,
unless a− b is in the intersection of the ideals, but by the above this implies a = b.

We now define the decoding problem and show how an analogue of the above list de-
coding algorithm will solve this new decoding question. We are now given ideals I1, . . . , In
and elements β1, . . . , βn, and we want to find all messages m ∈M such that |{i : m− βi ∈
Ii}| ≥ a. The algorithm is as follows

• Find a non-zero Q ∈ R[y] that is low-degree in y, and such that all coefficients are of
small size, such that Q(βi) ∈ Ii for all i.

• Factor Q(y) and output all m such that y − m|Q(y) and m satisfies the desired
agreement

Again, note that we are factoring polynomials. We saw how to do this in “most” rings,
such as over Z[y] (using the LLL algorithm) in the case of Chinese Remainder codes. We
did not cover some rings, such as Fq(z)[x]/〈g〉, for irreducible g ∈ Fq(z)[x], but algorithms
exist for factoring in such rings.

For the first step, note that for when M is a linear message space, and the notion of
small is compatible with this linearity, we can use a linear system solver to find the Q, and
this is exactly what was done in the case of Reed-Solomon codes. Over Z, this is more
difficult, but still possible. One can observe that the conditions imposed on the polynomial
Q(y) are that it is a short-vector in a certain integer lattice. So, just like with factoring in
Z[y], we can use the LLL algorithm to find such polynomials.

Thus, we have seen that the algorithm can be implemented (and returns a small list of
polynomials, as Q(y) is of low-degree in y, and each y −m is of degree 1). For correctness,
we need to argue that for any appropriate m, y −m|Q for any such Q. To see this, note
that Q(m) is small, as m is of small size by assumption and all of the coefficients of Q are
small. So then Q(m) is small, and inside the ideals Ii for which m − βi ∈ Ii. As there are
at least a such ideals for m, it implies that Q(m) is the intersection of many ideals, so must
be either zero or large. But as Q(m) is small, it is then zero. Thus, y −m|Q(y).

We now discuss the parameters of this. Using LLL, we can essentially match the perfor-
mance of Reed-Solomon codes. More specifically, if we assume that each prime pi is around
p = n2, and take K = pk, and k = n1/10, then we can correct from about agreement

√
2kn

or higher.
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6 Extensions

We now discuss some extensions to this work. More recent work on Folded Reed-Solomon
Codes, due to Guruswami and Rudra (2006), which in turn were based on the work of
Paravesh and Vardy (2005), showed how to achieve better rate while doing list-decoding
(eg. decoding from k + εn agreement).

One can also modify the above algorithm on ideal correction to ensure that the Q(m)
is in the product of many ideals, as opposed to their intersection. This change can make
things algebraically nicer, and in turn leads to the study of when a polynomial vanishes
with multiplicity. It can be used to get better analysis of list-decoding Reed-Solomon codes.
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