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1 Overview

Today we talk about probabilistically checkable proofs (PCP) and how algebra helps in
constructing such proofs. First, we revisit and formally simplify the conventional notion of
a theorem and a proof. Next, we introduce the definition of a PCP. Finally, we discuss how
to use algebra to construct PCPs for the graph 3-colorability problem.

2 Theorems & Proofs

What is a theorem and what is a proof? From a “naive” point of view, each is just a string
of bits. This simple notion holds even for abstract proofs from geometry or topology: when
a geometer or a topologist publishes her proof, she need to write it out as a string of bits!
More formally, given integers l and n, where l ≤ n, a theorem T is an element of {0, 1}l; T
is true if and only if there exists a proof π ∈ {0, 1}n that “proves” it.

Note that in the above notion we do not worry about how n and l are related: n is
simply given as part of the theorem. This way, we avoid a decidability mess; one can simply
check all 2n possible proofs to decide if a given theorem is true.

In order to decide whether a proof proves a theorem, we need to have a system of logic.
This is captured by a verifier :

Definition 2.1 (Verifier). A verifier V is a polynomial time (in n) Turing Machine mapping
{0, 1}l × {0, 1}n to {0, 1} such that it satisfies the following two conditions:

• Completeness: If T ∈ {0, 1}l is true, ∃π ∈ {0, 1}n such that V (T, π) = 1.

• Soundness: If T ∈ {0, 1}l is false, V (T, π) = 0 for all π ∈ {0, 1}n.

We can associate theorems to any decidability problem in a straight-forward way. For
example, given three integers n, u, and l, we would like to decide if there exists a factor d of
n such that l ≤ d ≤ u. A theorem for this decidability problem can be specified by the triple
T = (n, u, l). To prove T , we only need to find an integer d of bounded size such that d|n
and l ≤ d ≤ u. It can be shown that this underlying logic system is complete, i.e., any proof
system can be reduced to it. The concept of completeness and reduction is analogous to the
one in complexity theory; in particular, reduction is captured by the following definition of
equivalence:

Definition 2.2 (Equivalence of Proof Systems). Two proof systems, V and V ′, are equiv-
alent if every theorem T in V with proof of length n can be reduced in polynomial time (in
n) to a theorem T ′ (of length poly(n)) in V ′ such that T is true iff T ′ is true. Moreover,
the length of T ′’s proof must be poly(n).
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Note that V could be a logic system for theorems from combinatorics while V ′ could
be a logic system for theorems from number theory. Once we show that V and V ′ are
equivalent, we can check every theorem in one system with the verifier of the other. This
can give us an edge if verifying theorems in the other system is easier. For example, from
complexity theory, we have the following fact:

Theorem 2.3 (Karp’s Theorem). Graph 3-coloring is NP -complete.

Therefore, we can reduce any proof system based a NP problem to the proof system
based the 3-colorability problem. That is, given a theorem T from a logic system, we can
somehow transform it into a graph G of size poly(n), where n = |T |; then T is true if and
only if G is 3-colorable. Under the new system, the proof is a proposed 3-coloring of G.
In most cases, this proof is more convenient to verify since, if it is wrong, it has an easy
localizable error (two adjacent vertices of the same color). However, finding such an error
deterministically still requires scanning over the entire G. As we will see, PCP tries to make
this verification task even easier.

3 Definition of PCP

In order to simplify the verification task, we can make the verifier more powerful by allowing
it to toss coins. Such verifier is called a probabilistically checkable proof (PCP) system.

Definition 3.1 (Probabilistically Checkable Proof System). Given an alphabet Σ, a prob-
abilistically checkable proof system, VPCP , is a randomized verifier that, on input T ∈ Σl

and π ∈ Σn, generates a random string R of length r and makes at most q queries to π
(based on T and R) such that it satisfies the following conditions:

• Completeness: If T is true, ∃π such that PrR[V π
PCP (T, π) = 1] = 1.

• Soundness: If T is false, ∀π we have that PrR[V π
PCP (T, π) = 1] ≤ 1

2 .

Two comments about this definition:

1. The way VPCP queries a proof π is based entirely on the theorem T and the random
string R. In other words, VPCP is not adaptive. This restriction can be relaxed.

2. The probabilities in the two conditions (1 and 1
2) can be parametrized.

3. The best PCP system (for the 3-colorability problem) only need to make at most 3
queries (at the expense of using more randomness).

As we can see, one can work with a variety of PCP systems by changing some require-
ments/parameters. For this lecture, however, we are only working with the above defition.
Furthermore, we restrict our system to the problem of 3-colorability. Our goal is to construct
a PCP system with O(poly(log n)) queries.
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4 Overview of Proof

Given a graph G whose vertex set V has size n, we are going to represent G as a function
E : V × V 7→ {0, 1} and a proposed 3-coloring as a function A : V 7→ {−1, 0, 1}. Therefore,
A is a valid 3-coloring for G if and only if ∀ i, j either E(i, j) = 0 or A(i) 6= A(j).

We bring algebra into the picture by embedding V injectively in a finite field F (|F | =
O(n)). We will use the following related facts about polynomial,

Theorem 4.1. (Two Facts about Polynomials)

Given a subset S ⊆ F and a univariate polynomail f : S 7→ F, ∃ a univariate polynomial
f̂ : F 7→ F of degree ≤ |S| such that

f̂(α) = f(α) ∀α ∈ S.

Given a subset S ⊆ F and a bivariate polynomial f : S × S 7→ F, ∃ a bivariate polynomial
f̂ : F× F 7→ F of degree ≤ |S| in each variable such that

f̂(α, β) = f(α, β) ∀(α, β) ∈ S × S.

Based on these two facts, we can “interpolate” A and E into two new polynomials Â
and Ê, respectively, such that deg(Â) ≤ n, degx(Ê) ≤ n and degy(Ê) ≤ n. Note that
since Â and Ê agree with A and E on V completely, we can use them instead to verify
3-colorability. So, to recapture the requirements we discussed about a valid 3-coloring, a
graph represented by Ê : F × F 7→ F, where degx,y(Ê) ≤ n, is 3-colorable if and only if
∃Â : F 7→ F, where deg(Â) ≤ n, such that,

1. Â uses no more than three colors: ∀α ∈ V , (Â(α) + 1)(Â(α))(Â(α)− 1) = 0.

2. Â is a valid 3-coloring: ∀ α, β ∈ V , Ê(α, β)
∏
i∈{−2,−1,1,2}(Â(α)− Â(β)− i) = 0.

Note that {−2,−1, 1, 2} contains all possible differences between two distinct elements of
{−1, 0, 1}.

Therefore, given a proof Â, the verifier VPCP need to make two sequential checks:

(a) Syntactic check: is the degree of Â ≤ n?

(b) Semantic check: does Â satisfy conditions 1 and 2 above?

Intuitively, the syntactic check verifies if the proof is in the right “language;” it is the more
technical part of this lecture. For now, we will assume that VPCP knows how to implement
syntactic check. More precisely, we are making the following assumptions:

1. Given a univariate polynomial A : F 7→ F, represented by an array containing its
evaluations at all |F| points, VPCP can verify that deg(A) ≤ d.

2. Similarly, given a bivariate polynomial B : F × F 7→ F, represented by a matrix
containing its evaluations at all |F|2 points, VPCP can verify that degx(B) ≤ d and
degy(B) ≤ d.

We will see that the actual proof (whose exact form we will specify in the next section)
contains not only Â, but some related univariate and bivariate polynomials as well; therefore,
the second assumption is required. For now we can assume that our proof passes the
syntactic check and move on to implementing the semantic check.
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5 Semantic Check

6 Syntactic Check

4


