
6.S897 Algebra and Computation May 2, 2012

Locally Decodable Codes

Instructor: Madhu Sudan Scribe: me

1 Overview

• Motivations and Definitions

• Locally Decodable Codes via Multivariate Polynomials

• Locally Decodable Codes via Multiplicities

• Matching Vector Codes (Introduction and Construction)

2 Motivation

Today’s lecture is on locally decodable codes. Current encoding schemes either involve
storing all information in one block (which allows for good error correction, but is very
slow–about the length of the block), or partitioning into smaller blocks (which allows for
fast error correction, but the probabilty that an error exists goes to 1.) Locally decodable
codes allow us to potentially get the best of both encodings. Locally decodable codes would
allow us to reconstruct an arbitrary bit of the original message by restricting our search to
only a small number of randomly chosen bits.

3 Definitions

Definition 3.1 (Locally Decodable Code). Let E : Σk → Σn be an error correcting code.
E should locally handle ε-fraction errors if there exists a decoding algorithm that on input
i ∈ [k], and given oracle access to a word y that is ∆((E(m), y) ≤ εn, is able to recover the
ith bit of the message in at most l queries, and

Pr[Dy(i) = mi] ≥
2

3

This is true for every choice of y and i, and D makes at most l queries into y.

4 LDCs via Multivariate Polynomials

Let us examine some known codes and see how well they do.Take for example Reed-Solomon
codes, which in some sense are almost locally decodable. For example, we have an RS code of
degree 4, and we want to recover some ath symbol of the codeword. The minimum number
of queries made is k + 1 before we can recover anything, because we have no information
between coordinates. We are looking for something sublinear–we work with the idea of

1

local ”redundancies”– that is, we need the code to have a small set of coordinates that have
dependencies. If this were the case, we could recover the ath symbol by looking at the
codeword entries that correspond to the symbol. Given this, we will try to restrict RS in
such a way that allows for this construction. A good place to start is low degree multivariate
polynomials, which allows us to deal with locality constraints because we know that on the
function values are restricted on a given line.

Let’s look at bivariate polynomials first. We know a polynomial exists of degree d of at
most 2h, so we can fit or extend any function on to an h× h box. We define our alphabet
as some field Fε with m variables, and given we can restrict to this box, our message space
is k = h2, and our encoding length n = q2. The number of uncorrupted symbols in the
word is at most (∆code)

n ≥ 1 − 2h
q . We also know that h = (1 − ε) q2 , and by doing some

substitution, we see that the decoding rate k
n goes to 1

4 from below. Our locality constraint
l =
√
n, which is the number of values we read on the line, which means we can apply RS

decoding on the line.
The general setting for multivariate polynomials is as follows; our code is evaluating

degree d polynomials over m variables:

• the encoding length n = qm

• the message space k =
(
d+m
m

)
≈ dm

m! ≈
(1−2ε)m

mm n

• distance d = (1− 2ε)q

• the field size q > d
1−2ε

• locality l ≈ n
1
m (the locality is always the size of the field so we can decode on lines

in the space).

Our rate is k
n ≥

1
m!(1− 2ε)m.

Let’s look at some interesting choices for parameters. If we set q = O(1), then the length

n = exp(k
1

q−1) and l = q so we have sublinear decoding. If we let m = log k
log log k then our

encoding length is polynomial in k and locality l = poly log k which is pretty good. We get

better locality by setting m = k
1
c then length n = qk

1
c (q ≈ c) and l = c+ 1. It was initially

believed that the (roughly) best possible behavior was l → n which would let the rate go
to O(1), or let locality be O(1) and then the encoding length would be exponential in kε.
It was thought that nontrivial locality had to be traded off with a low rate. However it was
shown by Kopparty, Saraf, and Yekhanin in 2010 that there is a class of codes constructed
via multiplicities that allows us to achieve very good rates without sacrificing efficiency of
local decoding algorithms.

5 LDCs via Multiplicities

The idea here is to construct a family of LDCs based on again evaluating multivariate
polynomials as well as their partial derivatives. This allows us to obtain the good local-
decodability of the previous codes and also achieve better rates (approaching 1) and distance
(locality nδ and rate 1 − δ). So before with multivariate codes where we couldnt achieve

2

good locality with r > 1
2 we now achieve a rate of 2

3 with about the same good locality for
lower rates of previous codes.

Let’s look at the simplest example of multiplicity codes. Let q be a prime power,
and let δ > 0 and the distance d = 2(1 − δ)q. The multiplicity code of order 2 does
evaluations of degree d bivariate polynomials over Fq is analagous to the original bivariate
construction. The coordinates are indexed by F2

q and codewords are indexed by bivariate
polynomials of degree at most d over the field. The alphabet size is instead F3

q . The
codeword corresponding to the bivariate polynomial p(x, y) is the vector of the ath symbol
consisting of the evaluation of p(a) as well as the partial derivatives px and py evaluated at
a. This code has distance δ = 1−d

2q due to the fact that two distinct polynomials of degree

d can agree with multiplicity 2 on at most d
2q fraction of points in the space. Since the

alphabet size is q3, the message length k =
(d+2

2)
3 ≈ 4q2

6 →
2
3n. Another thing to keep in

mind is the possibility of ”ambiguities”; if our polynomial doesn’t go far enough in partial
derivatives and it appears our function is 0? We get around this by using a variation of the
standard Schwartz-Zippel lemma.

Lemma 5.1 (Standard Schwartz-Zippel). If the degree of a polynomial f ≤ d, and Pr[f(a) =
0] > d

q then f ≡ 0

Lemma 5.2 (Multiplicity Schwartz-Zippel). If deg(f) ≤ d and Pr


p(a)
px(a)
py(a)
...

 > d
2q , then

f ≡ 0

We now construct the parameters for degree d multivariate polynomials of S-multiplicity

• the number of derivatives is
(
m+s
m

)
, so

• the alphabet Σ = F(m+s
m)

q

• d→ (s+ 1)q

• n = qm; k =
(m+d

m)
(m+s

s)
≈

dm

m!
sm

m!

so k ≈ (
ds)

m = ((s+1)q
s)m, and so we get that k → qm

From the Multiplicity Schwartz-Zippel Lemma, we obtain

Pr


p(a)
px(a)
py(a)

...

 > d

(s+ 1)q

so by letting m grow, and the order grow even faster we obtain the desired parameters:
l = nδ and k

n ≈ (1− δ) without a tradeoff.

3

6 LDCs via Matching Vector Codes

Finally we look at another class of LDCs due to Yekhanin, Raghavendra, and Efremenko
that are constructed from families of matching vectors. The decoding algorithm is again sim-
ilar to the original RS algorithm, but we work over these families instead of low degree poly-
nomials. The main result states that there exist codes with l = 3 and n = exp(exp(

√
(logk)),

as opposed to n = exp(k(1
2)) before. More generally, as l = O(1) then n = exp(exp(logk)ε).

The construction of these codes must satisfy some parameters:

• m ∈ Z+

• the field Fq has m|(q − 1) in order for Fq to have a primitive mth root.

• S ⊂ Zm, 0 /∈ S

• must have an ”S-nice” matrix M ∈ Zk×nm

Definition 6.1. A matrix M is ”S-nice” if for for some k × n matrix partitioned into two
parts, M1(message) and M2(check):

1. (M1)ii = 0

2. (M1)i,j ∈ S ∀i 6= j

3. M is closed under column addition.

4

