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Lecture 24
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1 Administrivia

• Tomorrow is the last day of project presentations: 10AM–11:50AM, room 32-G631.

• Please fill out course evaluations online.

• Class dinner tomorrow; details TBD.

2 Construction of Locally Decodable Codes

In this lecture we will develop a construction of locally decodable codes developed in three papers by
Yekhanin, Raghavendra, and Eframenko respectively (and chronologically). Yekhanin constructed
a family of binary locally decodable codes with a 3-query decoding algorithm based on Mersenne
primes. Raghavendra simplified Yekhanin’s construction and extended the ideas beyond binary
alphabets. The final construction presented here is due to Efremenko, building on the two previous
works.

2.1 Setup

We wish to construct an `-query locally decodable code E : Fk
q → Fn

q . We will specify this with a
k× n generator matrix G (with columns v1, . . . , vn), so the encoding function is E(x) = xG. Recall
from last lecture that the following two rough properties suffice for local decodability

• Linear Combinations: For each 1 ≤ i ≤ k, there should exist ` columns of G, say vj1 , . . . , vj` ,
whose span contains the ith elementary vector, ei = (0, . . . , 1, . . . , 0). So indices j1, . . . , j`
could be used to decode the ith symbol.

• Column Symmetry: We should have some symmetry in the column space of G, so that the
single linear combination above may be permuted into many, uniformly distributed `-tuples
that may be used to decode symbol i.

To achieve this aim, the construction of Yekhanin, Raghavendra, and Efremenko works over a
field Fq with a primitive mth root of unity g (in particular, m | q−1) and chooses an integer m ∈ Z+

and a subset S ⊆ Zm − {0}. A matrix M ∈ Zk×n
m is called S-nice if

• For 1 ≤ i, j ≤ k with i 6= j (i.e., on the leftmost k × k submatrix), we have Mii = 0 and
Mij ∈ S, and

• the columns of M are closed under addition: for any 1 ≤ j, j′ ≤ n (even j = j′), vj + vj′ is a
column of M .

If we choose an S-nice matrix M , then the generating matrix G for our code is the k × n matrix
G = [gMij ], denoted G = gM . We will prove:

Theorem 1 If M is S-nice, then G = gM generates an (|S|+ 1)-query locally decodable code.

24-1



Since the rate of the code is k/n, we want n as small as possible as a function of k. The following
propositions indicate performance bounds in particular cases.

Theorem 2 1. If m is prime and S = {1}, then n ≥ pk−1, and this bound is exactly achievable.

2. If m is prime and S is a multiplicative subgroup of Z∗m, then n ≥ p(k−1)
1/|S|

, and this bound
can be very nearly achieved.

3. If m = O(1) is composite (say m = 6) and S = Z∗m, then constructions exist with n ≤
exp(exp(

√
log k)).

The bound in part 1 is straightforward to prove but gives poor performance as an error correcting
code. The second claim is a bit more challenging, and the construction uses the tensor product
of vectors. Part 3 gives much better performance, and is the feature of today’s discussion. The
remainder of this lecture is spent proving this last claim of Theorem 2.

2.2 Sparseness Implies Local Decoding

The notion of sparseness will provide better locality for the resulting codes:

Definition 3 The set S is t-sparse if there is a polynomial p ∈ Fq[x] such that p(1) = 1, p(gs) = 0
for all s ∈ S, and p is t-sparse, i.e., p has at most t nonzero coefficients.

Theorem 4 If S is t-sparse, the code G can be locally decoded with t queries.

Observation 5 Because any S is (|S|+ 1)-sparse, Theorem 1 is a direct corollary of this result.

Proof Say S is t-sparse with polynomial p(x) =
∑
cdx

d with at most only t nonzero coefficients.
We may assume p(0) = 0 by replacing the constant term c0 with c0x

m. Let u1, . . . , un be the
columns of M . For any two indices 1 ≤ j, j′ ≤ n, the sum uj + uj′ is another column of M , so let
j ⊕ j′ denote the index of this column: uj + uj′ = uj⊕j′ .

Note that p(gMij ) =
∑

d cdg
dMij for 1 ≤ i, j ≤ k, and by choice of p, this value is 1 if i = j and

0 if i 6= j. Fix some j with 1 ≤ j ≤ k. For each d > 0, write j ⊕ j ⊕ · · · ⊕ j = jd (there are d terms
in the sum), so d · uj = uj + uj + · · ·+ uj = ujd . It follows that

∑
d cdvjd = ej , the jth elementary

vector: indeed, the ith entry of this vector is∑
d

cd(vjd)i =
∑
d

cdg
d·Mij = p(gMij ),

which is 1 or 0 depending on j = i or j 6= i, as needed. This gives us the Linear Combination
property described above.

The Symmetry property is given by the following transformation: if 1 ≤ r ≤ n is chosen randomly,
then we may “replace” the columns ujd by ujd + ur = ujd⊕r. Specifically, a similar computation
shows that ∑

d

cd · vjd⊕r = gMir · ej .

So the local decoding algorithm to recover the jth symbol of message w is as follows: pick r randomly
as above, query the values at indices jd ⊕ r in the encoded message, and return g−Mir

∑
d cdwjd⊕r.

Note that for each fixed d the quantity jd ⊕ r is a uniformly random index (but the distributions
for different ds are not independent), so a union bound shows that this successfully corrects an ε
fraction of errors with probability 1− dε.

While our eventual construction will not rely on sparseness beyond |S| + 1, Yekhanin’s original
paper used this stronger idea to construct 3-query, binary locally decodable codes from Mersenne
primes:
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Lemma 6 (Yekhanin) If q = m + 1 = 2t is a Mersenne prime, then S = {1, 2, 22, . . . , 2t−1} is
3-sparse.

Proof Because g is a primitive mth root of unity where m =
∣∣F∗q∣∣, all elements in F∗q are powers

of g. In particular, 1 + g = gi for some i, so define p(x) = 1 + x+ xi. We have p(1) = 1 + 1 + 1 = 1,

and for each 0 ≤ t ≤ t− 1, we have 1 + g2
t

= (1 + g)2
t

= (gi)2
t

, i.e., p(g2
t

) = 0.

2.3 OR Polynomials and the Final Construction

Efremenko’s construction makes clever use of polynomials that compute a mod-m version of the OR
of inputs on the {0, 1} cube:

Definition 7 A polynomial f(x1, . . . , x`) ∈ Zm[x1, . . . , x`] is an OR polynomial if f(0, . . . , 0) =
0 mod m and f(b1, . . . , b`) 6= 0 mod m for all (b1, . . . , b`) ∈ {0, 1}` − {(0, . . . , 0)}.

These polynomials were studied by Rasborov and Smolensky, who showed that if m is prime,
then any such polynomial has total degree Ω(`). It was conjectured that this bound would hold for
composite m as well, but this is not the case:

Theorem 8 (Beigel, Barrington, Rudich) If m is composite, there exists an `-variable OR poly-
nomial modulo m of degree O(`1/r), where r is the number of prime factors of m.

For example, there are OR polynomials for m = 6 of degree O(
√
`). Assuming this fact for

now, we can complete Efremenko’s construction of 6-query locally decodable codes with length
n ≤ exp(exp(

√
log k)).

Proof [Proof of Theorem 2 part 3] We take m = 6 and S = Z∗m, so the construction works for
any Fq with a primitive 6th root of unity. Let k = 2` and identify {1, . . . , k} with {0, 1}`, so the k
rows of our matrix M are indexed by points of {0, 1}` ∈ Z`

m. Let f(x1, . . . , x`) ∈ Zm[x1, . . . , x`] be
an OR polynomial of degree d = O(

√
k), and let the columns of M correspond to all polynomials in

Zm[x1, . . . , x`] of total degree at most d. The number of such polynomials is n ≈ 6`
d ≈ 62

√
` log ` ≈

exp(exp(
√

log k)). The matrix M is defined as follows: For u ∈ {0, 1}` and h ∈ Zm[x1, . . . , x`] of
degree ≤ d, define Mu,h = h(u).

The columns of M are closed under addition because low-degree polynomials are closed under
addition. It remains to find the k × k submatrix satisfying the first condition of S-niceness. For
u = (u1, . . . , u`) ∈ {0, 1}`, define hu(x1, . . . , x`) = f(t(u1, x1), . . . , t(u`, x`)), where t(ui, xi) denotes
xi if ui = 0 or 1 − xi if ui = 1. For u′ ∈ {0, 1}`, notice that (t(u1, u

′
1), . . . , t(u`, u

′
`)) is a {0, 1}

vector which is (0, . . . , 0) if and only if u = u′, so it follows that hu(u′) = 0 if u = u′ and otherwise
hu(u′) 6= 0 mod m, i.e., hu(u′) ∈ S. Taking the columns corresponding to functions hu as the first
columns of M therefore shows that M is S-nice, as required.

It remains to construct an OR function for m = 6 of degree
√
`. We roughly follow Beigel,

Barrington, and Rudich’s original proof:
Proof [Proof of Theorem 8 for m = 6] Choose integers a and b so that

√
` < 2a, 3b ≤ O(

√
`).

Let h(x) = 1 −
(
x−1
2a

)
, so that h(x) ∈ Q[x] satisfies h(0) = 0 and h(1) = · · · = h(2a) = 1 and,

furthermore, h is integer-valued : h(m) ∈ Z for any m ∈ Z. It may be checked that h(x) mod 2 is
periodic with period 2a; in other words, for m ∈ Z, h(m) is even if and only if 2a | m.

By general facts about integer-valued polynomials (or by explicit computation), we may alter-

natively write h(x) =
∑2a

i=0 ci
(
x
i

)
with ci ∈ Z. Now define f2(x1, . . . , x`) =

∑2a

i=0 cipi(x1, . . . , x`),

where pi(x1, . . . , x`) is the symmetric polynomial obtained by adding the
(
`
i

)
monomials of the form

xj1xj2 · · ·xji with j1 < j2 < · · · < ji. If vector (b1, . . . , b`) ∈ {0, 1}` has exactly t ones and ` − t
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zeros, then pi(b1, . . . , b`) =
(
t
i

)
, so it follows that f2(b1, . . . , b`) = h(t), which is even when 2a | t and

odd otherwise. Furthermore, by construction, f2 has integer coefficients.
Similarly, we may construct a polynomial f3 ∈ Z[x1, . . . , x`] so that, for (b1, . . . , b`) ∈ {0, 1}`

with t ones, the value of f3(b1, . . . , b`) is divisible by 3 if and only if 3b | t.
Finally, define f ∈ Z6[x1, . . . , x`] via the Chinese Remainder Theorem by the conditions f ≡

f2 mod 2 and f ≡ f3 mod 3. It follows that for any (b1, . . . , b`) ∈ {0, 1}` with t ones, f(b1, . . . , b`) =
0 ∈ Z6 if and only if 2a3b | t, and since 0 ≤ t ≤ ` < 2a3b, this happens if and only if t = 0. Since
deg(f) = max(deg(f2),deg(f3)) = max(2a, 3b) = O(

√
`), this is the desired OR function.
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